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1. Overview

The spatial and/or temporal variability of clouds is
of paramount importance for at least two intensely re-
searched sub-problems in global and regional climate
modeling: cloud-radiation interaction where correlations
can trigger 3D radiative transfer effects; and dynamical
cloud modeling where the goal is to realistically repro-
duce the said correlations. We propose wavelets as a
simple yet powerful way of quantifying cloud variability.

We introduce “semi-discrete” wavelet transforms
which are discrete in scale, as in Mallat's (1989) efficient
cascade technique known as “multi-resolution analysis,”
but they are continuous in position (Davis et al. 1999,
and references therein). The number of coefficients
and algorithmic complexity then grows only as N log N,
where N is the number of points (pixels) in the time-
series (image). The redundancy of this representation
at each scale has been exploited previously, using several
different terminologies, in denoising and data compres-
sion applications but we see it as a safeguard when cu-
mulating spatial statistics. Also, the wavelets are scaled
so that the exponents of the statistical moments of the
coefficients are the same as for structure functions at all
orders, at least for nonstationary signals with stationary
increments. By now, we have effectively relaxed the ha-
bitual constraints of orthogonality and normalization in
wavelet theory (Daubechies 1992).

We apply 1D and 2D semi-discrete wavelet trans-
forms to remote sensing data on cloud structure from
two sources:
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e an upward-looking mm cloud radar (MMCR) at
DOE's climate observation site in Oklahoma sup-
porting the Atmospheric Radiation Measurement
(ARM) Program; and

e DOE’s Multispectral Thermal Imager (MTI), a
high-resolution instrument described in sufficient
detail for our present purposes by Weber et al.
(1999).

The scale-dependence of the variance of the wavelet
coefficients always appears to be a better discriminator
of transition from stationary to nonstationary behavior
than conventional methods based on auto-correlation
analysis, 2nd-order structure function (a.k.a. the semi-
variogram), or spectral analysis. Consider the following
examples

e Stationary behavior is found in uncorrelated in-
strumental noise at very small scales and after
the large-scale decorrelation of cloudiness; here,
wavelet coefficients decrease with increasing scale.

e Nonstationary behavior is found in the turbulence
of horizontal structure in clouds as well as instru-
mental or physical smoothing in the data; here,
wavelet coefficients increase with scale.

In all of these regimes, we have theoretical predic-
tions for and/or empirical evidence of power-law rela-
tions for wavelet statistics with respect to scale, as ex-
pected in physical (finite scaling range) fractal phenom-
ena. In particular, we have long-range correlations in
cloud structure coming from the important nonstation-
ary regime.



Finally, we discuss artifacts we found in the data that
are traceable either to instrumental noise or to post-
processing liabilities.

2. Background on Wavelets and Scaling Laws

The wavelet transform of a signal f(z) is essentially a
convolution with a scaled version of an oscillating func-
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where z is real for a time-series and a 2D vector for
an image. The arguments (a,b) are respectively the
scale and position of the wavelet . Figure 1 shows
the Haar wavelet and its associated “scaling” function
which simply gives an average over two elements. In
the semi-discrete wavelet transform, we take a = 27 x
(pixel scale), where j = 0,...,jmaz, While b covers
all possible positions. That means all positions where
the support of the wavelet is still inside the data field.
The maximum scale of interest is determined by j,4z
which is set to |log, N| where N is the length of the
times series, or to |log, min{N,, N,}| for an image
with N = N, x N, pixels. Note that the choice ¢ =
0(xz— (pixel scale))—d(z) in 1D brings us back to classic
structure functions (Arneodo et al. 1995).

We will be seeking scaling relations for the wavelet
coefficients in Eq. (1), i.e., a parametric representation

of
(Ty[f1(a, b))y ~ a7, (2)

where (-), means averaging over the argument b. The
parameter H is a Hurst-like exponent that has the usual
(Mandelbrot 1982) meaning when between 0 and 1 but
can, in principle, be < 0 or > 1 depending on the choices
of f and . With the deliberately unconventional choice
of normalization in (1), d-correlated stationary (white)
noise yields H = —1/2, “1/f" noise yields H = 0, and
smooth (everywhere differentiable) signals yield H = 1.

Ty[fl(a,b) = ) dz. (1)

3. 1D Horizontal Transects of mm-Radar Re-
flectivity

We first analyze a 6-day long sequence of cloud mm-
radar data collected at the ARM Southern Great Plains
site, January 9-14, 1998. Vertical profiles of reflectivity
f(x) = Z(t,z), where x = vt, v being the appropriate
advection velocity. A full suite of range bins with Az =
45m is captured every At = 10s (Az = 50m at a
nominal 5 m/s advection speed). The data are not very
interesting to visualize. Indeed, during this long cloudy
episode, there was always a low-level cloud occupying
typically the first 20 levels, and not much else. We
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Figure 1: Haar wavelets in 1D (left) and in 2D (right).

performed 1D semi-discrete wavelet analyses for each
level, using 5 short instances of linear interpolation to
compensate for the data drop-out between days.
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Figure 2: 1D semi-discrete wavelet spectrum analysis
of horizontal layers of ARM cloud-radar data. Solid line
— height 180 m, dashed line — 630 m.

Figure 2 shows a log-log plot of log,(Ty[f](a,b)*)s
versus log, a for levels 180, m and 630 m respectively.
The range of scales is huge, from 10s to 10 x 24
s, roughly 46 hours (corresponding to several hundred
km).

We see that the lower layers exhibit three scaling
regimes. As scale increases, we see a very smooth



regime, with H close to 1, followed by a regime with
H = 1/3 which is characteristic of boundary-layer tur-
bulence, and finally we wee a stationary regime with
H < 0. Keeping the mean wind at = 5m/s, transi-
tions are respectively at =~ 0.5km and ~ 50km. The
latter scale is is probably exaggerated since the wind
eventually meanders.

The small-scale transition from turbulence to smooth-
ness is not observed in in-situ probings and it is in
fact explained by the interpolation performed betweer
4 or more neighboring horizontal samples in the specific
“best estimate” radar operation mode used here. As it
turns out, this mode is designed for whole-column mon-
itoring and compromises the sampling in the boundary
layer. The interpolation remedy is safe in the sense of
mean values but it corrupts the correlation structures.
As an example, it would be very misleading to use these
radar data at small scales to assess cloud model per-
formance since in dynamical modeling too it is unfor-
tunately necessary to introduce an artificial smoothing
(in this case, it is to control small-scale numerical insta-
bilities). We recommend that either the temporal radar
sampling be increased so that the interpolation becomes
unnecessary or that the reflectivity profiles be archived
at a resolution which is dynamically meaningful.

In contrast, the large-scale transition is apparently
real and probably related to the scale-breaks observed in
reflected (Austin et al. 1999) and transmitted (Savigny
et al. 2002) radiance fields at several tens of kilometers.
The likely microphysical explanation for this scale-break
is the cap imposed on liquid water path, hence its vari-
ability, in stratus layers by the onset of efficient drizzle
production. This process is still poorly understood.

The higher layers exhibit just two scaling regimes: the
same artificially smoothed regime as for the low levels,
and a long essentially flat regime (for the wavelet coef-
ficient). This corresponds to a “1/f" spectrum and the
change in scaling with height emphasizes the statistical
anisotropy and heterogeneity of clouds.

4. 2D Correlations in MTI Cloud Data

We now turn to data from MTI, a high-resolution
push-broom imaging spectro-radiometer with state-of-
the-art calibration (especially in the thermal IR chan-
nels). In the visible/near-IR spectral region of interest
here, the pixels have a mere 5 m footprint (better res-
olution is now commercially available, but only in pan-
chromatic mode). We investigated a completely cloud-
covered scene of opportunity (not illustrated) which is
very smooth across the whole image. MTI's focal plane
has 3 sensor chip arrays (SCAs) that build up the com-
plete swath. The most striking feature of the image is

indeed the two boundaries between SCAs. Since they
are not systematically inter-calibrated, we analyze them
separately.
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Figure 3: 2nd-order statistics for MTI cloud data:
wavelet analysis of the z-variability for SCA 1 (solid
line), SCA 2 (dotted line), SCA 3 (dashed line). Other
wavelets in Fig. 1 give similar results.

Figure 3 shows shows wavelet energy spectra based
on the 2D Haar transform in Fig. 1 for the 3 SCAs. Over
these scales (5 m to 1.3 km), we expected a very smooth
radiance field due to the horizontal transport of photons
across many pixel scales via multiple scattering. This
“radiative smoothing” has been quantified by Marshak
et al. (1995) and others. We therefore anticipate H to
be quite close to 1. This makes the scale-break in Fig.
3 around 2? pixels (20 m) rather intriguing. We find
the expected H value at larger scales, and a negative
H, characteristic of stationary noise, at smaller scales.
The turn-around in wavelet energy occurs where signal
equals noise. Note that, in this study, “signal’ means
the diminutive wavelet coefficients for a smooth field,
not the overall photon counts, while “noise” (whatever
its instrumental source may be) is amplified by taking
differences of large quantities to compute the wavelet
coefficient.

The origin of this detector noise is not fully under-
stood. It is believed to be traceable to the extrapola-
tion of radiometric calibration data gathered for rela-
tively dark targets to the unusually bright (and indeed
inadvertent) target in this cloudy image.

5. Summary

We have analyzed ground-based/active and satel-
lite/passive remote sensing data on stratus cloud layers
with semi-discrete wavelet transforms. For simplicity,



the piece-wise constant Haar wavelet was used in the
1D analysis of mm-radar transects, and its extension
to 2D by tensor products for the satellite imagery. We
confirmed the existence of well-known scaling laws and
a lesser-known scale-break that ends the long-range cor-
relations in cloud structure at a few tens of km.

Our most interesting finding is that scale-breaks in
wavelet energy spectra can also be used to diagnose
problems in the data, unsuspected artifacts. In this
study alone, we found a deficit in variance (traceable to
human intervention) and an excess of variance (trace-
able to an instrumental noise).
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