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1. Introduction

One of the outstanding open challenges for theoretical fluid mechanics in the 21st century

is to derive rigorous results for turbulence directly from the fundamental equations of

motion, the Navier-Stokes equations, without imposing ad hoc assumptions or uncontrolled

closures. Exact results are extremely rare, but it is possible to derive rigorous and physically

meaningful limits on some of the fundamental physical variables quantifying turbulent

dynamics and transport. The bulk rate of energy dissipation is one such quantity of particular

interest due to its production as a result of the turbulent cascade in the high Reynolds

number vanishing viscosity limit. The derivation of mathematically rigorous bounds on the

energy dissipation rate, and hence also a variety important quantities such as turbulent drag

coefficients and heat and mass transport rates, has been a lively area of research in recent

decades.

Beginning in the early 1960s, L.N. Howard and F.H. Busse pioneered the application

of variational approaches for the derivation of rigorous—and physically relevant—bounds

on the dissipation rate for boundary-driven flows; see their reviews [20, 1]. In the 1990s,

P. Constantin and the senior author of this paper introduced the the so-called background

flow method [6, 7] based on an old idea by Hopf [19]. The background method was

soon improved by Nicodemus et al [22] who introduced an additional variational ‘balance’

parameter, and by the late 1990s Kerswell [21] had shown that the background method

equipped with the balance parameter is dual to the Howard-Busse variational approach.

Those theoretical techniques have been applied to many flows driven by boundary conditions,

including shear flows and a variety of thermal convection problems [3, 4, 12, 5, 11, 26, 25].

Attention has recently turned as well to the derivation of quantitative variational bounds

on the energy dissipation rate for body-forced flows. In these systems, the bulk (space and

time averaged) dissipation rate per unit mass ε is proportional to the power required to

maintain a statistically steady turbulent state. While body forces may be difficult to realize

in experiments, they are easily implemented computationally and are the standard method

of driving for direct numerical simulations (DNS) of turbulent flows.

Childress et al [2] applied a background-type method to body-forced flows in a periodic

domain, focusing on dissipation estimates in terms of the magnitude of the applied force.

In dimensionless variables they bounded ε in units of (F 3`)1/2, where F is the amplitude of

the applied force per unit mass and ` is the (lowest) length scale in the force. The estimates

were given in terms of the natural dimensionless control parameter, the Grashof number,

Gr := F`3/ν2, where ν is the kinematic viscosity. In practice, ε is often measured in inviscid

units of U 3/` as a function of the Reynolds number Re = U`/ν, where U is a relevant

velocity scale—an emergent quantity when the force is specified a priori. In both cases the

dissipation is bounded on one side by that of the associated Stokes flow [17]. When bounds

are expressed in terms of Gr, the Stokes limit is an upper bound, whereas when the estimates

are in terms of Re it is the lower limit.
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Foias [13] was the first to derive an upper bound on

β :=
ε`

U3

in terms Re, but with an inappropriate prefactor dependence on the aspect ratio α = L/`,

where L is the system volume, generally an independent variable from ` (see also [15, 16]).

That analysis was recently refined by Foias and one of the authors of this paper [9] to an

upper estimate of the form

β ≤ c1 +
c2
Re

,

where the coefficients c1 and c2 are independent of F, `, ν and α, depending only on

the “shape” of the (square integrable) body force. (This in consistent with much of

the conventional wisdom about the cascade in homogeneous isotropic turbulence theory

[18, 10, 14] as well as with wind tunnel measurements [27] and DNS data [28].) Most

recently, that approach was developed further by deriving a mini-max variational problem

on the time averaged dissipation rate for a particular domain geometry [8]. Moreover, the

variational problem was solved exactly at high Reynolds numbers to produce estimates on

the asymptotic behavior of the energy dissipation as a function of Re including the optimal

prefactor.

In this paper we extend the results in [8] by introducing a balance parameter c, the

analog of the variational parameter introduced by Nicodemus et al [22, 23, 24] for the

background method. This parameter controls a balance between the quantity being bounded,

the manifestly positive definite energy dissipation rate proportional to the L2 norm of the rate

of strain tensor, and the indefinite quantity derived from the power balance that is ultimately

being extremized. Specifically we consider the flow of a viscous incompressible fluid bounded

by two parallel planes with free-slip boundary conditions at the walls and periodic boundary

conditions in the other two directions. The flow is maintained by a time-independent body

force in the direction parallel to the walls. First we derive the Euler-Lagrange equations in

the case c = 0 (where the variational principle coincides with the one in [8]) and solve them

numerically at finite Re. The full (c > 0) Euler-Lagrange equations are quite complicated

but they can also be solved numerically by using Newton method with the c = 0 solution as

an initial guess.

The rest of this paper is organized as follows. In Section 2 we introduce the problem and

its variational formulation following [8]. In Section 3 we present the augmented variational

problem and derive the variational equations, explaining how we go about solving them.

In Section 4 we collect our numerical results, and in Section 5 we summarize the results

discussing the challenges of this approach and future directions for research.
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2. Statement of the problem

2.1. Notation

Consider a viscous incompressible Newtonian fluid moving between two parallel planes

located at y = 0 and y = `. Denote x the stream-wise direction and z be the span-wise

direction. The velocity vector field satisfies free-slip boundary conditions at the two planes

bounding the flow. We impose periodic boundary conditions in the other two directions.

The motion of the fluid is induced by a steady body force f along the x axis varying only in

the y direction.

The motion of the fluid is governed by Navier-Stokes equation

∂u

∂t
+ (u · ∇)u+∇p = 1

Re
∆u+ f (1)

and the incompressibility condition,

∇ · u = 0 . (2)

Here p(x, t) is the pressure field, and Re := Urms`
ν
is the Reynolds number, where Urms is the

root-mean square velocity of the fluid. The problem is non-dimensionalized by choosing the

unit of length to be ` and the unit for time to be `/Urms. Let 〈·〉 stand for the space-time
average. With this choice of units the velocity of the fluid u(x, t) = (u, v, w) is space-time

L2-normalized to 1:

〈|u|2〉 = 〈u2 + v2 + w2〉 = 1 . (3)

Given ε, is the space-time average energy dissipation rate in physical units, the non-

dimensional energy dissipation rate β is defined

β :=
`ε

U3rms
. (4)

The body force f in (1) has the form

f(x) = Fφ(y) ex ,

where the dimensionless shape function φ : [0, 1] → R has zero mean and satisfies

homogeneous Neumann boundary conditions, and is L2-normalized:
∫ 1

0

φ(y) dy = 0 , φ′(0) = 0 = φ′(1) ,

∫ 1

0

φ(y)2 dy = 1 .

Now let Φ ∈ H1([0, 1]) (where Hp([0, 1]) is the space of functions defined on [0, 1] with

L2-integrable pth derivatives) be the potential defined by

Φ′ = −φ , Φ(0) = 0 = Φ(1) .

(Note that we are free to impose homogeneous Dirichlet conditions on Φ at both boundaries

due to the zero mean condition on φ.)
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The spatial domain is (x, y, z) ∈ [0, Lx]× [0, 1]× [0, Lz] where Lx and Lz are the (non-

dimensionalized) lengths in x and z directions. Free-slip boundary conditions at the walls

are realized by

v = 0 ,
∂u

∂y
= 0 =

∂w

∂y
at y = 0 , 1 . (5)

2.2. Variational problem for the energy dissipation rate

Here we follow [8] to derive the variational problem for upper bounds on the energy

dissipation. Multiplying Navier-Stokes equation (1) by u, integrate over the spatial domain,

and average over time to obtain the energy dissipation rate

β :=
1

Re
〈|∇u|2〉 = 〈f · u〉 = F 〈φu〉 = −F 〈Φ′u〉 . (6)

To remove the explicit appearance of the amplitude F of the body force, multiply (1)

by a vector field of the form ψ(y)ex, where the multiplier function ψ ∈ H2([0, 1]) satisfies

homogeneous Neumann boundary conditions ψ′(0) = 0 = ψ′(1), and is not orthogonal to the

shape function φ. That is, 〈φψ〉 6= 0. We will also use the derivative of ψ
Ψ ≡ ψ′ ∈ H1([0, 1])

which satisfies homogeneous Dirichlet boundary conditions Ψ(0) = 0 = Ψ(1) and is not

orthogonal to the shape potential Φ, i.e., 〈ΦΨ〉 = 〈φψ〉 6= 0. We will call Ψ a test function.
Take the scalar product of (1) with ψ(y)ex, integrate over the volume (integrating by parts

by utilizing the boundary conditions) and take the long-time average to see that

−〈Ψuv〉 = 1

Re
〈Ψ′u〉+ F 〈ΦΨ〉 . (7)

Express the amplitude F of the body force from (7) and insert into the expression for the

energy dissipation (6) to obtain

β =
〈Φ′u〉 〈Ψuv + 1

Re
Ψ′u〉

〈ΦΨ〉 . (8)

2.3. Mini-max upper bounds for β

A variational bound on β may be obtained by first maximizing the right-hand side of (8) over

all unit-normalized divergence-free vector fields u that satisfy the boundary conditions (5),

and then minimizing over all choices of test functions Ψ ∈ H1([0, 1]) satisfying homogeneous

Dirichlet boundary conditions. Then any solution of Navier-Stokes equation will have energy

dissipation rate β bounded from above by

βb(Re) ≡ min
Ψ
max

u

〈Φ′u〉 〈Ψuv + 1
Re
Ψ′u〉

〈ΦΨ〉 . (9)

In order to study the bound (9) above, the authors of [8] first evaluated (exactly)

βb(∞) := min
Ψ
max

u

〈Φ′u〉 〈Ψuv〉
〈ΦΨ〉 ,
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and then used this result to analyze the behavior of βb(Re) for finite Re. Since we are going

to generalize that approach, we briefly recall the analysis:

The evaluation began with the proof that

max
u

〈Φ′u〉〈Ψuv〉 = 1√
27

sup
y∈[0,1]

|Ψ(y)| . (10)

This was accomplished by showing that the right-hand side of (10) is an upper bound for

〈Φ′u〉〈Ψuv〉 for any u in the class of vector field considered, and then explicitly constructing

a sequence of unit-normalized divergence-free vector fields u(k) = (u(k), v(k), w(k)) satisfying

the boundary conditions (5) such that u(k) saturate this bound in the limit k →∞, i.e.,

lim
k→∞

〈Φ′u(k)〉〈Ψu(k)v(k)〉 = 1√
27

sup
y∈[0,1]

|Ψ(y)| .

The precise form of u(k) is

u(k)(y, z) = gk(y)
√
2 sin kz − 1√

3
Φ′(y)

v(k)(y, z) = gk(y)
√
2 sin kz (11)

w(k)(y, z) =
1

k
g′k(y)

√
2 cos kz ,

where the sequence gk consists of smooth functions approximating as k → ∞ a Dirac δ

function with support centered at the points where the function Ψ ∈ H1([0, 1]) reaches an

extremum, and normalized as
〈

g2k +
1

2k2
g′k
2

〉

=
1

3
.

Note that the function Ψ ∈ H1([0, 1]) is continuous and hence it reaches its extremum in

[0, 1]. Moreover, since Ψ(0) = 0 = Ψ(1) and at the same time Ψ is not identically zero, a

point where Ψ reaches an extremum must be in the open interval (0, 1).

Following (10), it was proved that if Φ ∈ H1([0, 1]) changes sign only finitely many

times, then

βb(∞) =
1√
27
min
Ψ
sup
y∈[0,1]

|Ψ(y)|
〈ΦΨ〉 =

1√
27

1

〈|Φ|〉 ,

which is achieved for the choice of test function Ψ = signΦ. While signΦ is not in H 1([0, 1]),

it can be approximated arbitrarily closely (in the sense of pointwise convergence) by a

sequence of functions in H1([0, 1]).

In [8], the authors considered test functions Ψδ which are “linearly mollified”

approximations of signΦ, i.e., continuous piecewise linear functions approximating signΦ

by replacing the jumps of signΦ by lines of slope ± 1
δ
connecting the values −1 and 1 (see

Figure 1 in [8]). Finally, for finite Re, it was shown in [8] that by choosing δ ∼ O(Re−1/2),
the dissipation rate for Φ ∈ H1([0, 1]) behaves for large Re as

βb(Re) ≤ βb(∞) +O(Re−3/4) .
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If Φ is smooth (i.e., Φ has a bounded derivative and so behaves linearly around its zeroes),

then by taking δ ∼ O(Re−2/5) it was shown as well that
βb(Re) ≤ βb(∞) +O(Re−4/5) .

3. Improved variational principle

3.1. Introducing the balance parameter

Let c ∈ [0,∞) be arbitrary. Multiply (8) by 1 + c and add it to β = 1
Re
〈|∇u|2〉 multiplied

by −c. The result is

β = (1 + c)
〈Φ′u〉 〈Ψuv + 1

Re
Ψ′u〉

〈ΦΨ〉 − c

Re
〈|∇u|2〉 . (12)

Now we will obtain bounds on the energy dissipation by applying a mini-max procedure to

the functional in the right-hand side above.

The parameter c provides more constraint on the variational procedure than the case

considered in [8]. The space-time average of |∇u|2 is multiplied by −c < 0 so that for a
velocity field with a large gradient (like the one of the form (11) when gk tends to a Dirac δ

function), the right-hand side of (12) will become smaller.

While performing the maximization procedure we have to incorporate two explicit

constraints on the velocity vector fields: the unit-norm condition (3) and incompressibility

(2). The former one is easy to implement by adding a term with Lagrange multiplier λ

which is a number (i.e., does not depend on x and t). Incompressibility, however, requires

introducing a Lagrange multiplier (a “pressure”) that is a pointwise function which makes

the variational problem very difficult to analyze. So instead we will restrict the class of

velocity fields u over which we maximize to fields that are automatically divergence-free.

The functional incorporating the normalization constraint is

L[u] := (1 + c)
〈Φ′u〉 〈Ψuv + 1

Re
Ψ′u〉

〈ΦΨ〉 − c

Re
〈|∇u|2〉+ λ

2
〈|u|2 − 1〉 . (13)

The class of velocity fields u we will consider is a generalization of (11):

u(y, z) = U(y)
√
2 sin kz + Λ(y)

v(y, z) = V (y)
√
2 sin kz (14)

w(y, z) =
1

k
V ′(y)

√
2 cos kz ,

where the functions U , V , and Λ satisfy the boundary conditions

U ′(a) = V (a) = V ′′(a) = Λ′(a) = 0 , a = 0, 1 . (15)

Note that the vector field u defined in (14) is automatically divergence-free.

This class of velocity fields u (14) is restrictive, but in our opinion it constitutes a

physically reasonable ansatz. It has been observed for plane parallel shear flows that the

first modes to lose absolute stability have only cross-stream and span-wise variation with no
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dependence on the stream-wise coordinate x. Moreover, the parameter k in (14) can take any

real value, so this does not impose any restriction on the wavelength of the pattern in span-

wise (z) direction. Note also that the case of very high Reynolds numbers corresponds to the

choice c = 0 (see (13)), and in this case the family (14) will tend to the family (11) which we

know achieves the upper bound on the dissipation at infinite Re. All these considerations

make the choice of the family (14) quite reasonable. In the spirit of full disclosure, however,

we reiterate emphatically the assumption that we make in the analysis that follows:

Ansatz: We assume that the maximizing vector fields for the functional (13) have the

functional form (14).

In terms of U , V , and Λ, the expression (12) for the energy dissipation reads

β[U, V,Λ] = (1 + c)
〈Φ′Λ〉〈ΨUV + 1

Re
Ψ′Λ〉

〈ΦΨ〉

− c

Re

〈

k2U2 + k2V 2 + U ′2 + 2V ′2 +
1

k2
V ′′2 + Λ′2

〉

,

and the functional L[u] (13) taking into account the normalization constraint becomes

L[U, V,Λ] = β[U, V,Λ] +
λ

2

〈

U2 + V 2 +
1

k2
V ′2 + Λ2 − 1

〉

.

The Euler-Lagrange equations for U , V , Λ are

2c

Re
U ′′ +

(

λ− 2ck
2

Re

)

U + (1 + c)
〈Φ′Λ〉
〈ΦΨ〉 ΨV = 0 (16a)

− 2c

Re k2
V ′′′′ +

(

4c

Re
− λ

k2

)

V ′′ +

(

λ− 2ck
2

Re

)

V + (1 + c)
〈Φ′Λ〉
〈ΦΨ〉 ΨU = 0 (16b)

2c

Re
Λ′′ + λΛ +

1

Re
(1 + c)

〈Φ′Λ〉
〈ΦΨ〉 Ψ

′ +

[

(1 + c)
〈ΨUV 〉
〈ΦΨ〉 +

1

Re
(1 + c)

〈Ψ′Λ〉
〈ΦΨ〉

]

Φ′ = 0 , (16c)

where the “eigenvalue” λ is to be adjusted so that the triple (U, V,Λ) satisfies the

normalization
〈

U2 + V 2 +
1

k2
V ′2 + Λ2

〉

= 1 . (17)

3.2. Exact solution at finite Re for the case c = 0

In the case c = 0, the Euler-Lagrange equations (16a), (16b), (16c) become

λU +
〈Φ′Λ〉
〈ΦΨ〉 ΨV = 0 (18a)

− λ

k2
V ′′ + λV +

〈Φ′Λ〉
〈ΦΨ〉 ΨU = 0 (18b)
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λΛ +
1

Re

〈Φ′Λ〉
〈ΦΨ〉 Ψ

′ +

[〈ΨUV 〉
〈ΦΨ〉 +

1

Re

〈Ψ′Λ〉
〈ΦΨ〉

]

Φ′ = 0 . (18c)

Then the equations for U and Λ are algebraic equations, so the only boundary conditions

that have to be satisfied are

V (a) = 0 for a = 0, 1 . (19)

We can solve the boundary value problem (18a), (18b), (18c), (19) explicitly. First,

expressing U from (18a), and substituting into (18b), we obtain the following boundary

value problem for V :

− 1
k2
V ′′ + V = E2

Ψ2

〈Ψ2〉 V , V (0) = V (1) = 0 , (20)

where we have set

E :=
〈Φ′Λ〉

√

〈Ψ2〉
λ〈ΦΨ〉 . (21)

For each choice of test function Ψ we obtain a sequence of functions Vn and numbers En,

n = 1, 2, 3, . . .. For each n, the numbers En and the functions Vn depend on Re, k, and the

choice of test function Ψ. The functions Λn are (see the Appendix for a derivation)

Λn(y) =

[

− 1√
3

√

1 +
E2n

Re2〈Ψ2〉

(

〈Ψ′2〉+ 〈Φ
′Ψ′〉2
3

)

+
En〈Φ′Ψ′〉
3Re

√

〈Ψ2〉

]

Φ′(y)− En

Re
√

〈Ψ2〉
Ψ′(y) ,(22)

and the functions Un are

Un(y) = −
Ψ

√

〈Ψ2〉
Vn(y) . (23)

In the derivation of (22) we used the normalization condition (17) so that it is automatically

satisfied. Then the (non-dimensional) energy dissipation rate is

βn =
〈Φ′Ψ′〉
3〈ΦΨ〉

1

Re
+

〈Φ′Ψ′〉
3〈ΦΨ〉〈Ψ2〉

(

〈Ψ′2〉 − 〈Φ
′Ψ′〉2
9

)

E2n
Re3

+

√

〈Ψ2〉
3
√
3〈ΦΨ〉

1

En

[

1 +
1

〈Ψ2〉

(

〈Ψ′2〉+ 〈Φ
′Ψ′〉2
3

)

E2n
Re2

]3/2

. (24)

What remains to be done for a given shape potential and multiplier function is to find the

solutions for V and E. This we do numerically.

3.3. Finding the velocity profile and energy dissipation for c > 0

Suppose that we have found the functions U
(0)
n (23), V

(0)
n (20), and Λ

(0)
n (22) satisfying the

Euler-Lagrange equations (18a), (18b), (18c) and the boundary conditions (19) in the case

c = 0. In order to find the solution Un, Vn, Λn of the boundary value problem (16a), (16b),

(16c), (15) that satisfy the normalization condition (17) for c > 0, we use Newton method

with U
(0)
n , V

(0)
n , Λ

(0)
n as initial guess.
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According to the general methodology of the mini-max procedure, we have to first

maximize the expression for the energy dissipation rate β over all allowed velocity fields u

(14), and then to minimize maxu β over all allowed functions Ψ. With our ansatz for the form

of u, maximizing over u means maximizing over all real values of k. Then having found the

maximum of β over k, we minimize over both Ψ and the balance parameter c ≥ 0. In practice
we have to choose a particular family of test functions Ψ depending on a small number of

parameters, and minimize over those parameters and c. We will take a 1-parameter family

of test functions Ψδ (given explicitly in (27) below) where the parameter δ is a measure of

the thickness of a “boundary layer”.

Let β(Re, δ, c, k) be the mini-max upper bound for the turbulent energy dissipation as a

function of the Reynolds number Re, the parameter δ of the family Ψδ, the balance parameter

c, and the wavenumber k. Define β∗(Re, δ, c) to be the maximum over k of β(Re, δ, c, k),

and k∗(Re, δ, c) to be the value of k for which β(Re, δ, c, k) attains this maximum. Then

β∗(Re, δ, c) := max
k
β(Re, δ, c, k) , k∗(Re, δ, c) := argmax β(Re, δ, c, ·) . (25)

After maximizing over k, i.e., over the family of velocity fields u (14), we minimize over the

parameter δ of the family of test functions Ψδ, and the balance parameter c. That is, we

compute

βb(Re) := min
(δ,c)

β∗(Re, δ, c) , (δ∗(Re), c∗(Re)) := argmin β∗(Re, ·, ·) . (26)

4. Numerical results

4.1. Numerical example and implementation

As a specific model to analyze we chose the same shape function φ as in [8]:

Φ(y) =

√
2

π
sinπy , φ(y) = −Φ′(y) = −

√
2 cos πy .

In [8], the test functions Ψδ were chosen piecewise linear but not continuously differentiable.

For computational reasons we replace them with the smooth family

Ψδ(y) = (1− e−y/δ) (1− e−(1−y)/δ) , δ > 0 . (27)

The functions (27) satisfy the boundary conditions Ψδ(0) = 0 = Ψδ(1).

The boundary conditions of the Euler-Lagrange equations naturally suggest the use of

Chebyshev polynomials as interpolants to implement a pseudo-spectral scheme [29] to solve

these equations. The Matlab differentiation matrix suite [30] simplifies the implementation

by providing routines to discretize and represent differentiation operators as matrices.

Differentiation of a function then becomes multiplication of the differentiation matrix with

the vector of the function values at those Chebyshev nodes. However, the discretized

equations are still nonlinear in the c 6= 0 case. We started with the c = 0 equations which
are solvable as a linear eigenvalue problem (20). Then the standard Newton’s method was
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Figure 1. Integral lines of the velocity field for Re = 50.

applied to these solutions and iterated to solve the nonlinear equations (16a), (16b), (16c).

The Jacobian matrices needed in the Newton’s method were computed by a simple forward

difference scheme. Throughout all computations, 128 and 64 Chebyshev nodes were used

(the differences between the results for these choices of number of nodes did not exceed 10−7).

To illustrate the typical geometry of the flow, in Figures 1 and 2, we show the three

coordinate projections and the 3-dimensional view of typical integral lines (i.e., solutions of

(ẋ, ẏ, ż) = (u, v, w) for (u, v, w) given by (14)) of the maximizing flow field for Re = 50 and

Re = 1000, respectively. The values of the parameters δ, c, k, for the fields shown are the

ones that give the optimal bound, βb(Re) given by (26).

As an example of the mini-max procedure, we show in Figure 3 the upper bound on the

dissipation for Re = 50 obtained by using as a test function Ψδ from (27) with δ = 0.04; the

bound is given as a function of c ∈ [0, 1] and k ∈ (0, 25].
In Figure 4 we show the bound on the dissipation β for Re = 50 as a function of the

balance parameter c for different values of the span-wise wavenumber k; the data presented

have been obtained with Ψδ with δ = 0.04. The figure illustrates the general behavior of

β as a function of k and c – namely, for small k, the value of β increases with c, while for

larger k, β decreases with c. Clearly, the family of lines in the figure has an envelope – this

envelope is the graph of the function β∗(50, 0.04, c) (25). Having obtained the envelope, we

find the minimum value of β∗(50, 0.04, c) – this is the mini-max value we are looking for;
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Figure 2. Integral lines of the velocity field for Re = 1000.
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Figure 3. Bound on dissipation for Re = 50 as a function of c and k (using Ψ0.04).
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Figure 4. Bound on β for Re = 50 (obtained with Ψ0.04) as a function of c for several

values of k.

this point is labeled with βb in Figures 3 (where it is the saddle point) and 4.

4.2. Results

In Figure 5, we present the bounds from previous papers, as well as our new numerical

results. The dotted straight line represents the lower limit on the dissipation corresponding

to Stokes (laminar) flow,

βStokes ≥
π2

Re
.

The dot-dashed line in the upper part of the figure is the bound following [9] for this problem

obtained with Ψ = Φ:

βDF ≤
π√
2
+
π2

Re
.

The thin solid line shows the “non-optimal” bound from [8] (equation (3.14) in [8]),

βDES, non−optimal ≤
√
2π√
27
+
π2

Re
,
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Figure 5. Upper and lower bounds on β.

while the long-dashed one gives their “optimal” estimate (obtained from equation (3.12) in

[8] by first minimizing over ξ and then plugging Ψ = Φ):

βDES, optimal ≤
√
2π√
27

(

1 +
2π2

3Re2

)3/2

+
π2

3Re

(

1 +
4π2

9Re2

)

.

(Note that this line bifurcates from the lower Stokes bound at Re =
√
2π ≈ 4.4429). The

thick solid line starting from Re ≈ 178 is the best upper bound for high values of Re from
Theorem 1 of [8]:

βDES, Thm. 1 ≤
π2√
216

+
5(6π2)1/5

44/5Re4/5
≈ 0.67154 + 3.73089

Re4/5
. (28)

The circles in the figure give our new numerically determined upper bounds on β with the

choice Ψ = Φ and the crosses represent our numerical results for the choice (27) of Ψδ.

In Figure 6 we have plotted β − π2
√
216
(circles), k∗ (stars), and c∗ (x’s), versus Re for

the values of the dissipation bound obtained using the function Ψδ from (27). We see that

k∗ ∼
√
Re, c∗ ∼ 1

Re
, and from the figure we observe that β − π2

√
216
also behaves like a power

of Re. In the figure we illustrate these behaviors by showing the straight lines

β =
π2√
216

+
2.158

Re1.28
, k∗ = 1.0

√
Re , c∗ =

5.0

Re
.
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5. Concluding remarks

We have derived new bounds on the energy dissipation rate for an example of body-force

driven flow in a slippery channel. The fundamental improvement over previous results came

from the application of the balance parameter in the variational formulation of the bounds,

together with numerical solution of the Euler-Lagrange equations for the best estimate.

In Figure 7 the results of this analysis are compared with the direct numerical

simulations of the three-dimensional Navier-Stokes equations first reported in [8]. Over

the Reynolds number range 100–1000 where the data lie, the best bounds derived here,

using the balance parameter and minimization over the (restricted) family of multiplier

functions Ψδ, result in a quantitative improvement over the previous rigorous estimates. We

observe that the measured dissipation is a factor of 3 to 4 below the bound, which should be

considered nontrivial given the a priori nature of the estimates derived here. Presumably a

full optimization over possible multiplier functions Ψ would result in a further lowering of the

estimate at lower values of Re, producing a bound that intersects the lower Stokes bound

right at the energy stability limit (which we compute to be at Re = 2π). We note from

Figure 5 that the bounds computed with Φδ tend to agree with those computed using Φ = Ψ

at lower values of Re, indicating that both trial functions are about the same “distance”
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Figure 7. Comparison between theoretical results and DNS data (same symbols as in

Figure 5).

from the true optimal multiplier.

At higher Reynolds numbers the optimal solutions computed here converge rapidly to

the asymptotic bound βb(∞) computed analytically in [9]. Indeed, the bound derived here
approaches the asymptotic limit with a difference vanishing ∼ Re−1.28. This particular

scaling of the approach to the asymptotic limit helps to understand the role that the balance

parameter plays to lower the bound: while a naive estimate suggests that the approach might

be O(Re−1), the faster convergence may be attributed to the interplay of the c ∼ Re−1 and

k ∼
√
Re scaling in the prefactor and the subtracted term in (12).

There are several directions in which this line of research could be continued. One is

to develop more reliable and accurate analytical methods for estimating the best bounds

at finite Re. This would probably involve asymptotic approximations for small but finite

values of Re−1 which could lead to more general applications for other variational problems

as well. Another direction would be to develop methods to determine the true optimal

multiplier function at finite Re. The motivation there would largely be as a point of

principle, to demonstrate that the full min-max procedure can indeed be carried out—at

least for simple set-ups such as those considered here. Finally, going beyond the simple
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sinπy forcing considered in this paper there remains the question, first posed in [8], as to

the connection between the optimal multiplier and the true mean profile realized in direct

numerical simulations. Specifically, the question is whether there is a sensible correspondence

between the shape of the optimal multiplier and the mean profile for general force shapes.

The idea is that the optimal multiplier contains information about the extreme fluctuations

that might be realized in a turbulent flow, and some of those features may correlate with

the statistical properties of the flows.
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Appendix: Derivation of the expression (22) for Λ

In this Appendix we show how to derive the expression (22) for Λ in the case c = 0. First

exclude U from (18c) with the help of (18a):

Λ =
〈Φ′Λ〉〈Ψ2V 2〉
λ2〈ΦΨ〉2 Φ′ − 1

Re

1

λ〈ΦΨ〉
(

〈Φ′Λ〉Ψ′ + 〈Ψ′Λ〉Φ′
)

. (A.1)

Now multiply the equation for U (18a) by −U , add it to the equation for V (18b)

multiplied by V , and integrate the resulting identity to get the equidistribution property

〈U2〉 =
〈

V 2 + 1
k2V

′2
〉

, so that the normalization condition (17) can now be written as

2

〈

V 2 +
1

k2
V ′2
〉

+ 〈Λ2〉 = 1 . (A.2)

Multiplying (20) by V and integrating using the boundary conditions (19), we obtain
〈

V 2 +
1

k2
V ′2
〉

=
E2〈Ψ2V 2〉
〈Ψ2〉 ,

which, together with the new normalization (A.2), yields

1− 〈Λ2〉
2

=
E2〈Ψ2V 2〉
〈Ψ2〉 .

This expression and the definition of E (21) allow us to write the coefficient of the term of

order Re0 in the right-hand side of (A.1) as

〈Φ′Λ〉〈Ψ2V 2〉
λ2〈ΦΨ〉2 =

E2〈Ψ2V 2〉
〈Ψ2〉〈Φ′Λ〉 =

1− 〈Λ2〉
2〈Φ′Λ〉 .

Using the above relationship and expressing the Lagrange multiplier λ from (21), we can

rewrite (A.1) as

Λ =

(

1− 〈Λ2〉
2〈Φ′Λ〉 −

1

Re

E
√

〈Ψ2〉
〈Ψ′Λ〉
〈Φ′Λ〉

)

Φ′ − 1

Re

E
√

〈Ψ2〉
Ψ′ . (A.3)
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Let µ be the coefficient of Φ′ in (A.3), i.e.,

Λ := µΦ′ − 1

Re

E
√

〈Ψ2〉
Ψ′ . (A.4)

From this expression we easily obtain (recall that 〈Φ′2〉 = 1)

〈Λ2〉 = µ2 − 2E〈Φ
′Ψ′〉

Re
√

〈Ψ2〉
µ+

E2〈Ψ′2〉
Re2〈Ψ2〉

〈Φ′Λ〉 = µ− E〈Φ′Ψ′〉
Re
√

〈Ψ2〉

〈Ψ′Λ〉 = 〈Φ′Ψ′〉µ− E〈Ψ′2〉
Re
√

〈Ψ2〉
.

Plugging these expressions in the definition of the coefficient µ,

µ =
1− 〈Λ2〉
2〈Φ′Λ〉 −

1

Re

E
√

〈Ψ2〉
〈Ψ′Λ〉
〈Φ′Λ〉 ,

we obtain the following quadratic equation for µ:

3µ2 − 2E〈Φ
′Ψ′〉

Re
√

〈Ψ2〉
µ−

(

1 +
E2〈Ψ′2〉
Re2〈Ψ2〉

)

= 0 .

The “physical” solution of this equation (the one that has the right behavior in the limit

Re→∞) is

µ = − 1√
3

√

1 +
E2

Re2〈Ψ2〉

(

〈Ψ′2〉+ 〈Φ
′Ψ′〉2
3

)

+
E〈Φ′Ψ′〉
3Re

√

〈Ψ2〉
.

Plugging this into (A.4), we obtain the desired expression (22).
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