
Mechanical Vibrations

Ingredients.

1. From physics we have Newton’s Law of motion: Force equals mass times acceleration.

m
d2x

dt2
= Force

2. From physics (or engineering) we have Hooke’s law of the spring: Spring force is proportional to
the negative of the extension of the spring from the equilibrium position.

Spring force = −kx

3. From physics (or engineering) we have a mathematical model of friction forces: friction is propor-
tional to the negative of the velocity.

Friction force = −cdx
dt

4. We may add an external driving force, F (t).

Recipes.

1. Free undamped motion. Combine 1 and 2. This motion is described by the ODE

mx′′ = −kx

which rewrites as a homogeneous, linear second order ODE in standard form

x′′ + ω2
0x = 0

where ω0 =
√
k/m is called the circular frequency of the system.

The characteristic equation
r2 + ω2

0 = 0

has solutions r = ±ω0i. Therefore the ODE has solution

x(t) = c1 cos(ω0t) + c2 sin(ω0t)

which rewrites using trig addition formulae as

x(t) = A cos(ω0t− ϕ)

Note that

• This is a sinusoid.

• The motion is called simple harmonic motion.

• The coefficient A is called the amplitude of the motion.

• The motion is periodic with period T = 2π/ω0 seconds.

• The frequency of this motion is 1/T = ω0/2π Hz.

• The angle ϕ is called the phase shift or phase angle.



2. Free damped motion. Combine 1, 2 and 3. This motion is described by the ODE

mx′′ = −kx− cx′

which rewrites as a homogeneous, linear second order ODE in standard form

x′′ + 2px′ + ω2
0x = 0

where ω0 =
√
k/m as before and p = k/2m.

The characteristic equation
r2 + 2pr + ω2

0 = 0

has solutions given by the quadratic formula

r = −p±
√
p2 − ω2

0

There are thee cases to explore, depending on the sign of p2 − ω2
0.

(a) Case p2 − ω2
0 > 0. This is called over damped motion. The solution is

x(t) = c1e
−(p+
√
p2−ω2

0)t + c2e
−(p−
√
p2−ω2

0)t

These functions are graphed in Figure 3.4.7 of your text. Notice that x(t) → 0 without
oscillating as t→∞.

(b) Case p2 − ω2
0 = 0. This is called critically damped motion. The root r = −p has multiplicity

2, and so the solution is
x(t) = c1e

−pt + c2te
−pt

These functions are graphed in Figure 3.4.8 of your text. Notice that x(t) → 0 without
oscillating as t→∞.

(c) Case p2 − ω2
0 < 0. This is called underdamped motion. The roots are complex conjugate pairs

r = −p± ω1i where ω1 =
√
ω2
0 − p2, and so the solution is

x(t) = c1e
−pt cos(ω1t) + c2e

−pt sin(ω1t)

As in the undamped case, this can be rewritten using trig identities to get

x(t) = Ae−pt cos(ω1t− ϕ)

The graph is shown in Figure 3.4.9 of your text. Note that x(t) → 0 as t → ∞ but that
the function oscillates with frequency ω1/2π. The motion is not actually periodic since the
amplitude Ae−pt is decreasing in time, but you can speak of a pseudoperiod T = 2π/ω1.

3. Forced undamped motion. Combine 1, 2 and 4. Suppose that the external driving force varies
periodically in time, described by the function

F (t) = F0 cos(ωt).

The ODE describing the motion is

mx′′ = −kx+ F (t)

which rewrites as a linear second order ODE in standard form

x′′ + ω2
0x =

F0

m
cos(ωt)

There are now two cases to consider.



(a) Case ω 6= ω0. In this case the frequency of the periodic external driving force is different
from the natural frequency of the system. We use the method of undetermined coefficients to
find a particular solution which is a linear combination of cos(ωt) and sin(ωt). This turns out
to be

xp(t) =
F0/m

ω2
0 − ω2

cos(ωt)

The general solution is

x(t) = c1 cos(ω0t) + c2 sin(ω0t) +
F0/m

ω2
0 − ω2

cos(ωt)

A typical graph is shown in Figure 3.6.2 of your text.

In the case where x(0) = 0 = x′(0) we obtain the following solution

x(t) =
F0/m

ω2
0 − ω2

(cos(ωt)− cos(ω0t)

Some more trig identities can be used to show that this is the same as

x(t) =
2F0/m

ω2 − ω2
0

sin((ω − ω0)t/2) sin((ω + ω0)t/2)

In the special case where driving force frequency ω is almost equal to the natural frequency
ω0, then (ω − ω0)/2 is tiny in comparison with (ω + ω0)/2. We can think of the solution as a
signal with pseudofrequency (ω + ω0)/2 and slowly varying amplitude given by

2F0/m

ω2 − ω2
0

sin((ω − ω0)t/2)

A graph is shown in Figure 3.6.3 of the text. This is the phenomenon of beats.

(b) Case ω = ω0. In this case the frequency of the periodic external driving force is the same
as the natural frequency of the system. We use the method of undetermined coefficients to
find a particular solution. This will be a linear combination of cos(ω0t), sin(ω0t), t cos(ω0t),
t sin(ω0t), but we remember to remove the combinations of cos(ω0t) and sin(ω0t). We get

xp(t) =
F0

2mω0
t sin(ω0t).

The general solution of the equation is

x(t) =
F0

2mω0
t sin(ω0t) + c1 cos(ω0t) + c2 sin(ω0t)

For example, the solution which satisfies the initial conditions x(0) = 0 = x′(0) is

x(t) =
F0

2mω0
t sin(ω0t).

A graph is shown in Figure 3.6.4 of your text. Notice that the amplitude of the motion F0
2mω0

t
tends to∞ as t→∞. This phenomenon is called pure resonance. In reality the system (spring
etc) would distort and break before the amplitude gets too large.

Remark. Note that the equation describing beats limits on the pure resonance solution as
ω → ω0. Indeed the amplitude portion of the beats solution is

2F0/m

ω2 − ω2
0

sin((ω − ω0)t/2) =
2F0t

2m(ω + ω0)

sin((ω − ω0)t/2)

(ω − ω0)t/2



By the famous limit limθ→0
sin θ
θ = 1, we see that this amplitude function tends to the function

F0t

2mω0

as ω → ω0 provided t is not very large. This is the amplitude expression in the pure resonance
function. Again, in practice the spring will deform or break before the amplitude gets too
high, and the phenomenon is generally termed resonance whether it occurs because ω = ω0 or
because ω is close enough to ω0 to cause system failure.

4. Forced damped motion. Combine 1, 2, 3 and 4. Suppose that the external driving force varies
periodically in time, described by the function

F (t) = F0 cos(ωt).

The ODE describing the motion is

mx′′ = −kx− cx′ + F (t)

which rewrites as a linear second order ODE in standard form

x′′ + 2px′ + ω2
0x =

F0

m
cos(ωt) (∗∗)

The solution of this equation is of the form

x(t) = xh + xp

where xh is the solution to the homogeneous equation (already obtained in the free damped motion
case above — item 2). We had 3 possible functions for xh depending on whether p2 − ω2

0 < 0,
p2 − ω2

0 = 0, or p2 − ω2
0 > 0. In all three cases, the solution had the property that xh(t) → 0 as

t→∞. This portion of the solution is called transient.

The remaining portion of the solution xp will be found by the method of undetermined coefficients,
and will be closely related to the forcing function. This will not die off as t→∞, and is called the
steady-state portion of the solution. We look for coefficients A and B so that

xp(t) = A cos(ωt) +B sin(ωt)

is a solution to the ODE (∗∗). Substituting for yp, y
′
p and y′′p and, after tears of joy/frustration, we

obtain

xp(t) =
(k −mω2)F0

(k −mω2)2 + (cω)2
cos(ωt) +

cωF0

(k −mω2)2 + (cω)2
sin(ωt)

This can be rewritten using trig identities as

xp(t) = C cos(ωt− ϕ)

where the amplitude is given by the expression

C =
F0√

(k −mω2)2 + (cω)2
.

and the phase angle satisfies tan(ϕ) = (cω)/(k −mω2).

Note that the amplitude is always finite, but for a fixed system (i.e., fixed k, m and c) we can vary
the frequency of the external driving force to obtain a maximum amplitude. Mathematically we
just find the value of ω that optimizes C; solve dC

dω = 0 to get a maximum amplitude when the
driving force frequency is

ω =

√
k

m
− c2

2m2



Summary — Mechanical Vibrations

Motion ODE Solution Comments

Free x(t) = c1 cos(ω0t) + c2 sin(ω0t) ω2
0 = k/m

undamped mx′′ + kx = 0 = C cos(ω0t− ϕ) is the system frequency

Free x′′ + 2px′ + ω2
0x = 0 x(t) = c1e

−(p+
√
p2−ω2

0)t + c2e
−(p−
√
p2−ω2

0)t overdamped
damped p = c/2m p2 − ω2

0 > 0

x(t) = c1e
−pt + c2te

−pt critically damped
p2 − ω2

0 = 0

ω1 =
√
ω2
0 − p2 x(t) = e−pt(c1 cos(ω1t) + c2 sin(ω1t)) underdamped

p2 − ω2
0 < 0

Forced mx′′ + kx = F0 cos(ωt) x(t) = xh + xp Periodic external
undamped driving force

xp = F0

m(ω2
0−ω2)

cos(ωt)

x′′ + ω2
0x = F0

m cos(ωt) ω 6= ω0

xh = c1 cos(ω0t) + c2 sin(ω0t)

satisfies

x(t) = 2F0/m
ω2−ω2

0
sin( (ω−ω0)t

2 ) sin( (ω+ω0)t
2 ) x′(0) = 0 = x(0)

beats and
resonance

x(t) = F0
2mω0

t sin(ω0t) ω = ω0

x′(0) = 0 = x(0)
pure resonance

Forced Periodic external
damped mx′′ + cx′ + kx = F0 cos(ωt) x(t) = xh + xp driving force

xh = free damped sol. transient

xp = C cos(ωt− ϕ) steady-state

C = F0√
(k−mω2)2+(cω)2

tanϕ = (cω)/(k −mω2)


