First order ODEs - Substitution Techniques

We have been considering ODEs of the form

$$
\frac{d y}{d x}=F(x, y)
$$

We know how to handle

- separable equations (ones where $F(x, y)=f(x) g(y))$,
- first order linear equations (ones where $F(x, y)=q(x)-p(x) y)$, and
- exact equations (ones where $F(x, y)=-\frac{M(x, y)}{N(x, y)}$ and $\frac{\partial N}{\partial x}=\frac{\partial M}{\partial y}$).

Now we can add several more families of equations which have the following format

$$
\frac{d y}{d x}=f(v)
$$

where $v=v(x, y)$ is a particularly nice function of x and y. In all cases you can use the chain rule (or implicit differentiation) to write $\frac{d v}{d x}$ in terms of x, y and y^{\prime}.

$$
\frac{d v}{d x}=\frac{\partial v}{\partial x} \frac{d x}{d x}+\frac{\partial v}{\partial y} \frac{d y}{d x}=\frac{\partial v}{\partial x}+\frac{\partial v}{\partial y} \frac{d y}{d x}
$$

The result will be an ODE in v and x. This should remind you somewhat of substitution techniques for computing antiderivatives in calculus. Here are some nice functions $v(x, y)$.
Example 1. $v(x, y)=a x+b y+c$. Here a, b, c are constants.
In this case

$$
\frac{d v}{d x}=\frac{\partial v}{\partial x}+\frac{\partial v}{\partial y} \frac{d y}{d x}=a+b \frac{d y}{d x}
$$

and the ODE becomes

$$
\frac{d v}{d x}=a+b \frac{d y}{d x}=a+b f(v)
$$

or, simply

$$
\frac{d v}{d x}=a+b f(v)
$$

This is separable

$$
\frac{d v}{a+b f(v)}=d x
$$

Example 2. $v(x, y)=\frac{y}{x}$. These are called homogenous equations.
In this case

$$
\frac{d v}{d x}=-\frac{y}{x^{2}}+\frac{1}{x} \frac{d y}{d x}=-\frac{v}{x}+\frac{1}{x} \frac{d y}{d x}
$$

and multiplying across by x gives

$$
\frac{d y}{d x}=v+x \frac{d v}{d x}
$$

Therefore the ODE $y^{\prime}=f(y / x)$ becomes

$$
v+x \frac{d v}{d x}=f(v)
$$

which is separable

$$
\frac{d v}{f(v)-v}=\frac{d x}{x} .
$$

Sometimes substitutions are found after manipulating the equation a little bit, and the substitution may not fit into the general rubric $y^{\prime}=f(v)$ above. However the way of computing $\frac{d v}{d x}$ is no different from before, and the general strategy of reducing to a simpler first order ODE in v is the same.

Example 3. Bernoulli Equations. The following equations (called Bernoulli equations) are a classic example.

$$
\frac{d y}{d x}+p(x) y=q(x) y^{n}
$$

Note that if $n=0$ or $n=1$ then the Bernoulli equation becomes a first order linear equation. What about other (real) values of n ? First divide across by y^{n} to get

$$
\frac{1}{y^{n}} \frac{d y}{d x}+\frac{p(x)}{y^{n-1}}=q(x)
$$

The leftmost term of this equation is almost the output of a chain rule

$$
\frac{d}{d x}\left(\frac{1}{y^{n-1}}\right)=(1-n) \frac{1}{y^{n}} \frac{d y}{d x}
$$

and the second term contains $\frac{1}{v^{(n-1)}}$, so the substitution $v=\frac{1}{y^{n-1}}$ makes sense. The ODE becomes

$$
\frac{1}{(1-n)} \frac{d v}{d x}+p(x) v=q(x)
$$

or simply

$$
\frac{d v}{d x}+(1-n) p(x) v=(1-n) q(x)
$$

This is a first order linear ODE in v. We know how to solve these.

Second Order Equations. Finally, there are a few second order ODEs which can be solved by making a substitution which reduces them to a first order ODE. Solve the first order equation, and do one final integration. Here are two general instances where this strategy works.

Case: y does not appear explicitly in the 2nd order ODE. Consider a second order ODE of the form

$$
F\left(x, y^{\prime}, y^{\prime \prime}\right)=0
$$

Substitute $v=y^{\prime}$. Then we get a first order ODE of the form

$$
F\left(x, v, v^{\prime}\right)=0
$$

If we can solve this for $v=v(x)$ then simply integrate to get $y=\int v(x) d x+C$.
Case: x does not appear explicitly in the 2nd order ODE. Consider a second order ODE of the form

$$
F\left(y, y^{\prime}, y^{\prime \prime}\right)=0
$$

where derivatives are with respect to x. Substitute $v=y^{\prime}$. Then

$$
y^{\prime \prime}=\frac{d v}{d x}=\frac{d v}{d y} \frac{d y}{d x}=v \frac{d v}{d y}
$$

and we get a first order ODE of the form

$$
F\left(y, v, v v^{\prime}\right)=0
$$

Given a solution $v=v(y)$ we can write

$$
\frac{d x}{d y}=\frac{1}{\frac{d y}{d x}}=\frac{1}{v}
$$

and so

$$
x=\int \frac{d y}{v}+C
$$

gives the desired functional relationship between x and y.
Remark. Famous examples of the last type of second order equation occur when considering motion under a force which does not depend on time. Note that here the variable x will represent time, and so t is used in place of x. One example is

$$
m \frac{d^{2} y}{d t^{2}}=-m g
$$

motion under gravity.
Another example is

$$
m \frac{d^{2} y}{d t^{2}}=-k y
$$

motion under a spring (Hooke's law).
Substitute $v=\frac{d y}{d t}$ (note that physically v is velocity) and rewrite

$$
\frac{d^{2} y}{d t^{2}}=\frac{d v}{d t}=\frac{d v}{d y} \frac{d y}{d t}=v \frac{d v}{d y}
$$

The gravity motion equation becomes

$$
v \frac{d v}{d y}=-g
$$

which integrates (w.r.t y) to give

$$
\frac{v^{2}}{2}+g y=C
$$

Multiplying across by m gives the law of conservation of energy; kinetic energy plus gravitational potential energy remains constant.

The spring motion equation becomes

$$
v \frac{d v}{d y}=-\frac{k}{m} y
$$

which integrates (w.r.t y) to give

$$
\frac{v^{2}}{2}+\frac{k y^{2}}{2 m}=C
$$

Multiplying across by m gives the law of conservation of energy; kinetic energy plus spring potential energy remains constant.

These are two instances of the general principle

$$
\int(\text { Newton's Law of motion }) d(\text { position })=\text { Law of Conservation of Energy. }
$$

