
First order ODEs — Substitution Techniques

We have been considering ODEs of the form

dy

dx
= F (x, y).

We know how to handle

• separable equations (ones where F (x, y) = f(x)g(y)),

• first order linear equations (ones where F (x, y) = q(x) − p(x)y), and

• exact equations (ones where F (x, y) = −M(x,y)
N(x,y) and ∂N

∂x = ∂M
∂y ).

Now we can add several more families of equations which have the following format

dy

dx
= f(v)

where v = v(x, y) is a particularly nice function of x and y. In all cases you can use the chain rule (or
implicit differentiation) to write dv

dx in terms of x, y and y′.

dv

dx
=

∂v

∂x

dx

dx
+

∂v

∂y

dy

dx
=

∂v

∂x
+

∂v

∂y

dy

dx

The result will be an ODE in v and x. This should remind you somewhat of substitution techniques for
computing antiderivatives in calculus. Here are some nice functions v(x, y).

Example 1. v(x, y) = ax + by + c. Here a, b, c are constants.
In this case

dv

dx
=

∂v

∂x
+

∂v

∂y

dy

dx
= a + b

dy

dx

and the ODE becomes
dv

dx
= a + b

dy

dx
= a + bf(v)

or, simply
dv

dx
= a + bf(v).

This is separable
dv

a + bf(v)
= dx.

Example 2. v(x, y) = y
x . These are called homogenous equations.

In this case
dv

dx
= − y

x2
+

1

x

dy

dx
= −v

x
+

1

x

dy

dx
and multiplying across by x gives

dy

dx
= v + x

dv

dx

Therefore the ODE y′ = f(y/x) becomes

v + x
dv

dx
= f(v)

which is separable
dv

f(v) − v
=

dx

x
.



Sometimes substitutions are found after manipulating the equation a little bit, and the substitution may
not fit into the general rubric y′ = f(v) above. However the way of computing dv

dx is no different from
before, and the general strategy of reducing to a simpler first order ODE in v is the same.

Example 3. Bernoulli Equations. The following equations (called Bernoulli equations) are a
classic example.

dy

dx
+ p(x)y = q(x)yn

Note that if n = 0 or n = 1 then the Bernoulli equation becomes a first order linear equation. What
about other (real) values of n? First divide across by yn to get

1

yn
dy

dx
+

p(x)

yn−1
= q(x)

The leftmost term of this equation is almost the output of a chain rule

d

dx

(
1

yn−1

)
= (1 − n)

1

yn
dy

dx

and the second term contains 1
v(n−1) , so the substitution v = 1

yn−1 makes sense. The ODE becomes

1

(1 − n)

dv

dx
+ p(x)v = q(x)

or simply
dv

dx
+ (1 − n)p(x)v = (1 − n)q(x).

This is a first order linear ODE in v. We know how to solve these.

Second Order Equations. Finally, there are a few second order ODEs which can be solved by making
a substitution which reduces them to a first order ODE. Solve the first order equation, and do one final
integration. Here are two general instances where this strategy works.

Case: y does not appear explicitly in the 2nd order ODE. Consider a second order ODE of the
form

F (x, y′, y′′) = 0

Substitute v = y′. Then we get a first order ODE of the form

F (x, v, v′) = 0

If we can solve this for v = v(x) then simply integrate to get y =
∫
v(x) dx + C.

Case: x does not appear explicitly in the 2nd order ODE. Consider a second order ODE of the
form

F (y, y′, y′′) = 0

where derivatives are with respect to x. Substitute v = y′. Then

y′′ =
dv

dx
=

dv

dy

dy

dx
= v

dv

dy

and we get a first order ODE of the form

F (y, v, vv′) = 0.



Given a solution v = v(y) we can write
dx

dy
=

1
dy
dx

=
1

v

and so

x =

∫
dy

v
+ C

gives the desired functional relationship between x and y.

Remark. Famous examples of the last type of second order equation occur when considering motion
under a force which does not depend on time. Note that here the variable x will represent time, and so
t is used in place of x. One example is

m
d2y

dt2
= −mg

motion under gravity.
Another example is

m
d2y

dt2
= −ky

motion under a spring (Hooke’s law).
Substitute v = dy

dt (note that physically v is velocity) and rewrite

d2y

dt2
=

dv

dt
=

dv

dy

dy

dt
= v

dv

dy
.

The gravity motion equation becomes

v
dv

dy
= −g

which integrates (w.r.t y) to give
v2

2
+ gy = C

Multiplying across by m gives the law of conservation of energy; kinetic energy plus gravitational potential
energy remains constant.

The spring motion equation becomes

v
dv

dy
= − k

m
y

which integrates (w.r.t y) to give
v2

2
+

ky2

2m
= C

Multiplying across by m gives the law of conservation of energy; kinetic energy plus spring potential
energy remains constant.

These are two instances of the general principle∫
(Newton’s Law of motion) d(position) = Law of Conservation of Energy.


