1. Trig Addition, Half Angle.

$$
\begin{aligned}
& \cos (A \pm B)=\cos (A) \cos (B) \mp \sin (A) \sin (B) \\
& \cos (2 A)=2 \cos ^{2}(A)-1 \\
& \cos ^{2}(x)=(1+\cos (2 x)) / 2 \\
& \sin (A \pm B)=\sin (A) \cos (B) \pm \cos (A) \sin (B)
\end{aligned}
$$

$$
\cos (2 A)=\cos ^{2}(A)-\sin ^{2}(A)
$$

$$
\sin ^{2}(x)=(1-\cos (2 x)) / 2
$$

$$
\sin (2 x)=2 \sin (x) \cos (x)
$$

2. Hyperbolic.

$$
\sinh (x)=\frac{1}{2}\left(e^{x}-e^{-x}\right) \quad \cosh (x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)
$$

3. Integration by Parts.

$\int u d v=u v-\int v d u$
4. Integration by substitution.

$$
\int f(u(x)) \frac{d u}{d x} d x=\int f(u) d u
$$

5. Inverse Trig.
$\frac{d}{d x} \sin ^{-1}(x)=\frac{1}{\sqrt{1-x^{2}}} \quad \frac{d}{d x} \tan ^{-1}(x)=\frac{1}{1+x^{2}} \quad \int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)$

6. Trig Substitutions.

For $\sqrt{a^{2}-x^{2}}$ use $x=a \sin (\theta)$
For $\sqrt{a^{2}+x^{2}}$ use $x=a \tan (\theta)$
For $\sqrt{x^{2}-a^{2}}$ use $x=a \sec (\theta)$

7. Some integrals.

$$
\begin{gathered}
\int \frac{d x}{x}=\ln |x|+C \quad \int \tan (x) d x=\ln |\sec (x)|+C \\
\int \sec (x) d x=\ln |\sec (x)+\tan (x)|+C
\end{gathered}
$$

8. First order linear ODE $y^{\prime}+p(x) y=q(x)$ can be solved by first multiplying across by an integrating factor

$$
I=e^{\int p d x}
$$

9. The equation $M(x, y) d x+N(x, y) d y=0$ is said to be exact if $M_{y}=N_{x}$. If it is exact, it can be solved by antidifferentiating M with respect to x and N with respect to y to obtain $F(x, y)$ and then setting $F(x, y)=C$.
10. An ODE of the form $y^{\prime}=f(a x+b y+c)$ can be solved by first making a substitution $v=a x+b y+c$.
11. An ODE of the form $y^{\prime}=f(y / x)$ can be solved by first making a substitution $v=y / x$.
12. The Bernoulli equation $y^{\prime}+p(x) y=q(x) y^{n}$ can be solved by first making a substitution $v=\frac{1}{y^{n-1}}$.
13. Some second order ODEs can be solved by making the substitution $v=y^{\prime}$.
14. A linear ODE is of the form

$$
\begin{equation*}
L y=f(x) \tag{*}
\end{equation*}
$$

where L is a linear differential operator

$$
L=y^{(n)}+a_{1}(x) y^{(n-1)}+\cdots+a_{n}(x) y .
$$

The solution to $(*)$ can be written as

$$
y=y_{h}+y_{p}
$$

where y_{p} is a particular solution to $(*)$ and y_{h} is the solution to the associated homogeneous equation

$$
L y=0
$$

15. The general solution of the homogeneous equation is of the form

$$
y_{h}=c_{1} y_{1}+\cdots+c_{n} y_{n}
$$

where y_{1}, \ldots, y_{n} are linearly independent solutions of $(+)$.
16. In the case the a_{i} are constant functions the solution of $(+)$ is a sum of exponential terms $e^{r x}$ and polynomial times exponential $x^{m} e^{r x}$ where the r are solutions of the characteristic equation

$$
r^{n}+a_{1} r^{n-1}+\cdots+a_{n-1} r+a_{n}=0
$$

The polynomial times exponential terms occur when the root r repeats with multiplicity greater than 1. Euler's identity

$$
e^{(a+i b) x}=e^{a x}(\cos (b x)+i \sin (b x))
$$

is useful for dealing with the case when the roots are complex numbers.
17. Particular solutions to $(*)$ can be found by the method of undetermined coefficients. Suppose that there is a linear differential operator A such that $A f(x)=0$. Then one can look for a particular solution to $(*)$ among the solutions to the homogeneous equation

$$
A L y=0
$$

by finding a suitable linear combination (i.e. determining suitable coefficients) of the linearly independent solutions to $A L y=0$.
18. Particular solutions to $(*)$ can also be found by the method of variation of parameters. There is a particular solution of the form

$$
y_{p}=c_{1} y_{1}+\cdots+c_{n} y_{n}
$$

where the y_{i} are the linearly independent solutions to $(+)$ and the coefficients c_{i} are now functions of x. One obtains a system of simultaneous equations in $c_{1}^{\prime} \ldots, c_{n}^{\prime}$ whose coefficient matrix has determinant equal to the Wronskian $W\left(y_{1}, \ldots, y_{n}\right)$.
19. Simple mechanical vibration systems consisting of a mass m attached to a spring (with constant k) in the presence of friction (with constant c) and an external driving force $f(t)$ give rise to a second order linear ODE

$$
m x^{\prime \prime}+c x^{\prime}+k x=f(t)
$$

20. Homogeneous systems. An nth order homogeneous system is an equation of the form

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x} \quad(+)
$$

where $\mathbf{x}=\mathbf{x}(t)$ is an $n \times 1$ column vector of functions of t, and A is an $n \times n$ matrix whose entries are functions of t. If the entries of A are all constants, then the system is called constant coefficient. A general solution of $(+)$ is of the form

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+\cdots+c_{n} \mathbf{x}_{n}(t)
$$

where the c_{i} are constants (parameters) and the $\mathbf{x}_{i}(t)$ are n linearly independent column vectors.
21. Linear systems. A general linear system is an equation of the form

$$
\begin{equation*}
\frac{d \mathbf{x}}{d t}=A \mathbf{x}+\mathbf{f}(t) \tag{*}
\end{equation*}
$$

where $\mathbf{x}=\mathbf{x}(t)$ is an $n \times 1$ column vector of functions of t, A is an $n \times n$ matrix whose entries are functions of t, and $\mathbf{f}(t)$ is a column vector of functions of t. If the entries of A are all constants, then the system is called constant coefficient.
The general solution of $(*)$ is of the form

$$
\mathbf{x}(t)=\mathbf{x}_{p}(t)+\mathbf{x}_{h}(t)
$$

where $\mathbf{x}_{p}(t)$ is a particular solution of $(*)$ and $\mathbf{x}_{h}(t)$ is the general solution of the associated homogeneous equation $(+)$.
22. Eigenvalue-eigenvector method. The solutions of $(+)$ in the constant-coefficient case are obtained by (1) solving $\operatorname{det}(A-\lambda I)=0$ to find the eigenvalues λ of A; (2) for each eigenvalue λ solving the equation $(A-\lambda I) \mathbf{v}=\mathbf{0}$ for eignevectors \mathbf{v}; and (3) constructing solutions of the form $e^{\lambda t} \mathbf{v}$.
One has to take care with (1) complex eigenvalues/eigenvectors, and with (2) repeated eigenvalues that may give rise to generalized eigenvectors and solutions of the form $e^{\lambda t}\left(t \mathbf{v}_{1}+\mathbf{v}_{2}\right)$ etc.
The case of complex eigenvectors will be greatly simplified if you use Euler's identity

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

23. Fundamental matrix and exponential matrix. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ be n linearly independent solutions to (+). Then writing these as column vectors of an $n \times n$ matrix gives the fundamental matrix $\Phi(t)$. Note that

$$
\Phi(t)(\Phi(0))^{-1}=e^{A t}
$$

where the exponential matrix $e^{A t}$ is defined by the power series

$$
e^{A t}=I+A t+\frac{A^{2} t^{2}}{2}+\cdots
$$

For certain matrices A it is easier to directly compute $e^{A t}$ directly from the power series definition.
24. Variation of Parameters. Let $\Phi(t)$ be a fundamental matrix for the homogeneous system (+). Then a particular solution of $(*)$ is obtained by the formula

$$
\mathbf{x}_{p}(t)=\Phi(t) \int(\Phi(t))^{-1} \mathbf{f}(t) d t
$$

25. Laplace Transform. The Laplace transform of $f(t)$ is a function $F(s)=\mathcal{L}\{f(t)\}$ defined by

$$
\mathcal{L}\{f(t)\}=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

26. Properties of $\mathcal{L}\{f(t)\}=F(s)$. The Laplace transform $\mathcal{L}\{f(t)\}=F(s)$ satisfies the following properties.
(a) Linearity. $\mathcal{L}\{a f(t)+b g(t)\}=a F(s)+b G(s)$ where a, b are constants and $G(s)=\mathcal{L}\{g(t)\}$.
(b) Power functions. $\mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}$
(c) Exponential functions. $\mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a}$
(d) Sine. $\mathcal{L}\{\sin (a t)\}=\frac{a}{s^{2}+a^{2}}$
(e) Cosine. $\mathcal{L}\{\cos (a t)\}=\frac{s}{s^{2}+a^{2}}$
(f) Derivative (t-domain). $\mathcal{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)$
(g) Derivative (s-domain). $\mathcal{L}\left\{t^{n} f(t)\right\}=(-1)^{n} \frac{d^{n}}{d s^{n}} F(s)$
(h) Shift (t-domain). $\mathcal{L}\{u(t-a) f(t-a)\}=e^{-a s} F(s)$ where $u(t)=0$ for all $t \leq 0$ and $u(t)=1$ for all $t>0$.
(i) Shift (s-domain). $\mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a)$
(j) Convolution. $\mathcal{L}\{(f * g)(t)\}=F(s) G(s)$ where $(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau$.
27. Laplace Transform applied to IVPs.

$$
\text { IVP } \xrightarrow{\mathcal{L}} \text { Algebra } \xrightarrow{\text { part. frac. }} \text { Simpler algebra terms } \xrightarrow{\mathcal{L}^{-1}} \text { Solution to IVP }
$$

