1. Trig Addition, Half Angle.

$$
\begin{aligned}
& \cos (A \pm B)=\cos (A) \cos (B) \mp \sin (A) \sin (B) \\
& \cos (2 A)=2 \cos ^{2}(A)-1 \\
& \cos ^{2}(x)=(1+\cos (2 x)) / 2 \\
& \sin (A \pm B)=\sin (A) \cos (B) \pm \cos (A) \sin (B)
\end{aligned}
$$

$$
\begin{array}{r}
\cos (2 A)=\cos ^{2}(A)-\sin ^{2}(A) \\
\sin ^{2}(x)=(1-\cos (2 x)) / 2 \\
\sin (2 x)=2 \sin (x) \cos (x)
\end{array}
$$

2. Hyperbolic.

$$
\sinh (x)=\frac{1}{2}\left(e^{x}-e^{-x}\right)
$$

$$
\cosh (x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)
$$

3. Integration by Parts.

$\int u d v=u v-\int v d u$
4. Integration by substitution.

$$
\int f(u(x)) \frac{d u}{d x} d x=\int f(u) d u
$$

5. Inverse Trig.
$\frac{d}{d x} \sin ^{-1}(x)=\frac{1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x} \tan ^{-1}(x)=\frac{1}{1+x^{2}}$
$\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)$
6. Trig Substitutions.

For $\sqrt{a^{2}-x^{2}}$ use $x=a \sin (\theta)$
For $\sqrt{a^{2}+x^{2}}$ use $x=a \tan (\theta)$
For $\sqrt{x^{2}-a^{2}}$ use $x=a \sec (\theta)$

7. Some integrals.

$$
\begin{gathered}
\int \frac{d x}{x}=\ln |x|+C \\
\int \tan (x) d x=\ln |\sec (x)|+C \\
\int \sec (x) d x=\ln |\sec (x)+\tan (x)|+C
\end{gathered}
$$

8. Homogeneous systems. An nth order homogeneous system is an equation of the form

$$
\frac{d \mathbf{x}}{d t}=A \mathbf{x}
$$

where $\mathbf{x}=\mathbf{x}(t)$ is an $n \times 1$ column vector of functions of t, and A is an $n \times n$ matrix whose entries are functions of t. If the entries of A are all constants, then the system is called constant coefficient. A general solution of $(+)$ is of the form

$$
\mathbf{x}(t)=c_{1} \mathbf{x}_{1}(t)+\cdots+c_{n} \mathbf{x}_{n}(t)
$$

where the c_{i} are constants (parameters) and the $\mathbf{x}_{i}(t)$ are n linearly independent column vectors.
9. Linear systems. A general linear system is an equation of the form

$$
\begin{equation*}
\frac{d \mathbf{x}}{d t}=A \mathbf{x}+\mathbf{f}(t) \tag{*}
\end{equation*}
$$

where $\mathbf{x}=\mathbf{x}(t)$ is an $n \times 1$ column vector of functions of t, A is an $n \times n$ matrix whose entries are functions of t, and $\mathbf{f}(t)$ is a column vector of functions of t. If the entries of A are all constants, then the system is called constant coefficient.
The general solution of $(*)$ is of the form

$$
\mathbf{x}(t)=\mathbf{x}_{p}(t)+\mathbf{x}_{h}(t)
$$

where $\mathbf{x}_{p}(t)$ is a particular solution of $(*)$ and $\mathbf{x}_{h}(t)$ is the general solution of the associated homogeneous equation $(+)$.
10. Eigenvalue-eigenvector method. The solutions of $(+)$ in the constant-coefficient case are obtained by (1) solving $\operatorname{det}(A-\lambda I)=0$ to find the eigenvalues λ of A; (2) for each eigenvalue λ solving the equation $(A-\lambda I) \mathbf{v}=\mathbf{0}$ for eignevectors \mathbf{v}; and (3) constructing solutions of the form $e^{\lambda t} \mathbf{v}$.
One has to take care with (1) complex eigenvalues/eigenvectors, and with (2) repeated eigenvalues that may give rise to generalized eigenvectors and solutions of the form $e^{\lambda t}\left(t \mathbf{v}_{1}+\mathbf{v}_{2}\right)$ etc.
The case of complex eigenvectors will be greatly simplified if you use Euler's identity

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

11. Fundamental matrix. Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ be n linearly independent solutions to (+). Then writing these as column vectors of an $n \times n$ matrix gives the fundamental matrix $\Phi(t)$. Note that

$$
\Phi(t)(\Phi(0))^{-1}=e^{A t}
$$

where the exponential matrix $e^{A t}$ is defined by the power series

$$
e^{A t}=I+A t+\frac{A^{2} t^{2}}{2}+\cdots
$$

For certain matrices A it is easier to directly compute $e^{A t}$ directly from the power series definition.
12. Undetermined coefficients. Let $\Phi(t)$ be a fundamental matrix for the homogeneous system $(+)$. Then a particular solution of $(*)$ is obtained by the formula

$$
\mathbf{x}_{p}(t)=\Phi(t) \int(\Phi(t))^{-1} \mathbf{f}(t) d t
$$

