1. Trig Addition, Half Angle.

$$
\begin{aligned}
& \cos (A \pm B)=\cos (A) \cos (B) \mp \sin (A) \sin (B) \\
& \cos ^{2}(2 A)=2 \cos ^{2}(A)-1 \\
& \cos ^{2}(x)=(1+\cos (2 x)) / 2 \\
& \sin (A \pm B)=\sin (A) \cos (B) \pm \cos (A) \sin (B)
\end{aligned}
$$

$$
\begin{array}{r}
\cos (2 A)=\cos ^{2}(A)-\sin ^{2}(A) \\
\sin ^{2}(x)=(1-\cos (2 x)) / 2 \\
\sin (2 x)=2 \sin (x) \cos (x)
\end{array}
$$

2. Hyperbolic.

$$
\sinh (x)=\frac{1}{2}\left(e^{x}-e^{-x}\right) \quad \cosh (x)=\frac{1}{2}\left(e^{x}+e^{-x}\right)
$$

3. Integration by Parts.
$\int u d v=u v-\int v d u$
4. Integration by substitution.

$$
\int f(u(x)) \frac{d u}{d x} d x=\int f(u) d u
$$

5. Inverse Trig.
$\frac{d}{d x} \sin ^{-1}(x)=\frac{1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x} \tan ^{-1}(x)=\frac{1}{1+x^{2}}$
$\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)$
6. Trig Substitutions.

For $\sqrt{a^{2}-x^{2}}$ use $x=a \sin (\theta)$
For $\sqrt{a^{2}+x^{2}}$ use $x=a \tan (\theta)$
For $\sqrt{x^{2}-a^{2}}$ use $x=a \sec (\theta)$
7. Some integrals.

$$
\begin{gathered}
\int \frac{d x}{x}=\ln |x|+C \\
\int \tan (x) d x=\ln |\sec (x)|+C \\
\int \sec (x) d x=\ln |\sec (x)+\tan (x)|+C
\end{gathered}
$$

8. First order linear ODE $y^{\prime}+p(x) y=q(x)$ can be solved by first multiplying across by an integrating factor

$$
I=e^{\int p d x}
$$

9. The equation $M(x, y) d x+N(x, y) d y=0$ is said to be exact if $M_{y}=N_{x}$. If it is exact, it can be solved by antidifferentiating M with respect to x and N with respect to y to obtain $F(x, y)$ and then setting $F(x, y)=C$.
10. An ODE of the form $y^{\prime}=f(a x+b y+c)$ can be solved by first making a substitution $v=a x+b y+c$.
11. An ODE of the form $y^{\prime}=f(y / x)$ can be solved by first making a substitution $v=y / x$.
12. The Bernoulli equation $y^{\prime}+p(x) y=q(x) y^{n}$ can be solved by first making a substitution $v=\frac{1}{y^{n-1}}$.
