
Second Order Linear Equations.

The general form of a linear second order equation is

y′′ + p(x)y′ + q(x)y = f(x) (∗)

This can be written as
Ly = f(x)

where L is the linear differential operator

L = D2 + p(x)D + q(x).

1. Existence/Uniqueness. The first result tells us about existence and uniqueness of solutions to
(∗). In order to talk about uniqueness we need to specify some initial conditions, such as the value
of a solution and the value of its derivative at a particular input.

Theorem. Suppose that the three functions p(x), q(x) and f(x) are continuous on some open
interval I in the real line, and suppose that a is a point of I. Then, given any pair of real numbers
b0 and b1, the IVP

y′′ + p(x)y′ + q(x)y = f(x) y(a) = b0, y′(a) = b1

has a unique solution defined on all of I.

2. Associated homogeneous equation. Suppose that yp is some particular solution to (∗) guaran-
teed by the previous result. Now if y is any other solution of (∗) then we can use linearity of L to
say

L(y − yp) = Ly − Lyp = f(x)− f(x) = 0.

Thus y − yp is a solution of the associated homogeneous equation

y′′ + p(x)y′ + q(x)y = 0 (+)

We can summarize this as follows. The general solution to the ODE (∗) can be written as a sum

y = yp + yh

where yp is a particular solution to (∗) and yh is the general solution to (+).

3. Homogeneous equation — superposition principle. Linearity helps us describe the general
solution to the homogeneous equation (+). If y1 and y2 are two solutions of (+) and c1 and c2 are
any two real numbers, then

y = c1y1 + c2y2

is also a solution to (+).

4. General solution of the homogeneous equation — theory. We claim that there are two
functions y1 and y2 with the property that the general solution of (+) is of the form

y = c1y1 + c2y2

Indeed, given a point a ∈ I, the existence theorem implies that there is a function y1 which is a
solution of (+) and which satisfies y1(a) = 1 and y′1(a) = 0.

Another application of the existence theorem shows that there exists a function y2 which is also a
solution of (+) and which satisfies y2(a) = 0 and y′2(a) = 1.



We claim that c1y1 + c2y2 is a general solution of (+). If y is an arbitrary solution of (+), then let
c1 = y(a) and let c2 = y′(a). Now by the superposition principle c1y1 + c2y2 is a solution of (+),
and by our choice of the constants ci we have

c1y1(a) + c2y2(a) = (c1)(1) + (c2)(0) = c1 = y(a)

and
c1y
′
1(a) + c2y

′
2(a) = (c1)(0) + (c2)(1) = c2 = y′(a).

This means that y and c1y1 + c2y2 satisfy the same IVP, and by uniqueness we conclude that

y = c1y1 + c2y2 on the interval I.

Thus, an arbitrary solution y of (+) can be written as a linear combination c1y1 + c2y2 of y1 and
y2. We say that c1y1 + c2y2 is a general solution of (+).

5. Back to (∗). Combining results from items 2 and 4 above we can write that the general solution
to (∗) in the form

y = yp + c1y1 + c2y2

where yp is a particular solution to (∗) and c1y1 + c2y2 is the general solution to the associated
homogeneous equation (+), which is written as a 2-parameter combination of the solutions y1 and
y2.

6. General solution of the homogeneous equation — practice. In practice there are many
other pairs of functions y1 and y2 that form the basis for a 2–parameter description of the general
solution of (+). Such pairs are called fundamental sets of solutions.

We will give a proof of the fact that the following are three equivalent characterizations of funda-
mental sets later on. Let’s get used to using them now.

The following three statements about solutions y1 and y2 of (+) are equivalent.

(a) The 2-parameter family
c1y1 + c2y2

is a general solution of (+) on I. That is, the collection {y1, y2} is a fundamental set of
solutions. Recall that this means that every solution y of (+) can be written as a linear
combination y = c1y1 + c2y2 of y1, y2 on I.

(b) The Wronskian of the two solutions y1 and y2, defined by

W (y1, y2) = det

(
y1 y2
y′1 y′2

)
= y1y

′
2 − y′1y2

is not zero at some input point a of I. That is

W (y1, y2)(a) 6= 0

Equivalently, W (y1, y2) 6= 0 at all points of I.

(c) The solutions y1 and y2 are linearly independent on I. This means that the only combi-
nation of

c1y1 + c2y2

which gives the constant function 0 on I is the trivial combination, c1 = 0 = c2. Equivalently,
y1 and y2 are not scalar multiples of one another on I.



7. Homogeneous equations with constant coefficients — finding solutions. There is a cool
strategy for finding solutions to (+) in the special case where p(x) = b and q(x) = c are constant
functions.

Strategy. Look for solutions of the form y = erx for suitable numbers r. Since y′ = rerx and
y′′ = r2erx, then (+) becomes

erx(r2 + br + c) = 0

But erx is never 0. Thus r satisfies the characteristic equation

r2 + br + c = 0.

This is a quadratic equation, and the quadratic formula will give solutions for r:

r =
−b±

√
b2 − 4c

2

There are 3 possibilities.

• Distinct real roots. (b2 − 4c > 0) Then we get two solutions er1x and er2x. It is easy to
verify that they are linearly independent and therefore the general solution is

y = c1e
r1x + c2e

r2x.

• Repeated real root. (b2 − 4c = 0) In this case it is easy to verify that erx and xerx are
solutions and that they are independent. In this case the general solution is

y = c1e
rx + c2xe

rx.

• Distinct complex roots. (b2− 4c < 0) In this case r is a complex number, and the function
erx is a complex-valued function (once we make sense of the exponential of a complex number).
We will need to take some time aside to discuss complex numbers and complex-valued functions
before dealing with this case.



Recognizing fundamental sets of solutions
–A proof that the three characterizations in item 6 above are equivalent–

We have seen from the existence and uniqueness theorem that every ODE of the form

y′′ + p(x)y′ + q(x)y = 0 (+)

where p, q are continuous on an open interval I has a fundamental set of solutions. For example, given a
point a ∈ I, the solutions {y1, y2} which satisfy

y1(a) = 1, y′1(a) = 0, y2(a) = 0, y′2(a) = 1

forms a fundamental set.
However, in practice (for example if you find two solutions by solving a characteristic equation) you

may be given solutions y1, y2 to (+) on I which do not satisfy the nice 1–0–0–1 pattern above. How can
you tell if {y1, y2} forms a fundamental set? Well, item 6 above provides two alternative (equivalent)
characterizations of when two functions {y1, y2} form a fundamental set of solutions (a) of the ODE (+).
There is characterization (b) which requires that the Wronskian W (y1, y2) 6= 0 on I, and characterization
(c) which requires that the solutions be linearly independent on I.

Conditions (a) and (b) of item 6 are equivalent. Well, the key fact that made the set {y1, y2} with
the 1–0–0–1 pattern above work is that it was easy to solve the initial condition equations

c1y1(a) + c2y2(a) = b0

c1y
′
1(a) + c2y

′
2(a) = b1

for an arbitrary RHS b0, b1. So all we have to check is that at some point a the equations above have
a unique solution for all possible choices of RHS. Using the language of column vectors these equations
become one vector equation.

c1

(
y1(a)
y′1(a)

)
+ c2

(
y2(a)
y′2(a)

)
=

(
b0
b1

)
(A)

This equation will have a unique solution for every RHS precisely when the two vectors

(
y1(a)
y′1(a)

)
and(

y2(a)
y′2(a)

)
are linearly independent vectors in R2. This means that neither vector is a multiple of the other.

A simple algebra way to formulate this is that

y1(a)y′2(a)− y′1(a)y2(a) 6= 0

If you brought all y1 terms to one side and all y2 terms to the other, this equation would become the

equation stating that the slopes of the vectors

(
y1(a)
y′1(a)

)
and

(
y2(a)
y′2(a)

)
are the same. But since some of

the denominators could be 0, it is better to write this equality of slopes out as above.

Determinants. The expression ad− bc is called the determinant of the 2× 2 matrix(
a b
c d

)
and is denoted by

det

(
a b
c d

)
= ad− bc



and it is 0 if and only if one of the two column vectors

(
a
c

)
and

(
b
d

)
is a scalar multiple of the other.

Wronskians. Given two differentiable functions y1 and y2 their Wronskian is defined to be the following
determinant

W (y1, y2) = det

(
y1 y2
y′1 y′2

)
= y1y

′
2 − y′1y2

It is a function of x. Condition (a) above that {y1, y2} is a fundamental set of solutions to (+) is equivalent
to the condition that W (y1, y2)(a) 6= 0 for some input point a ∈ I.

The argument above shows that conditions (a) and (b) of item 6 are equivalent.

Well there is still the question of why W (y1, y2)(a) 6= 0 implies that W 6= 0 for all other points of
I. This follows from the following lovely formula due to Abel. We write W (x) as short hand for the
Wronskian W (y1, y2)(x) considered as a function of x.

W (x) = W (a)e−
∫ x
a p(s) ds

where p(x) is the coefficient function from the linear homogeneous ODE (+). Note that the exponential
is never 0, thus W (x) is never 0 on I if it is not 0 at some point a ∈ I. This completes the statement of
(b) in item 6.

Abel’s formula is proven by first showing that W (x) satisfies a separable ODE

dW

dx
+ p(x)W = 0

The latter is seen by differentiating the terms in W using the product rule, and then using the fact that
y1, y2 satisfy the ODE (+) to see that the LHS of the equation above all works out to be 0.

dW

dx
+ pW = (y′1y

′
2 + y1y

′′
2 − y′′1y2 − y′1y

′
2) + p(y1y

′
2 − y′1y2)

Note that the y′1y
′
2 terms with opposite signs cancel, and we factor y1 and y2 out of the remaining 4 terms

to get
dW

dx
+ p(x)W = y1(y

′′
2 + py′2)− y2(y

′′
1 + py′1) = y1(−qy2)− y2(−qy1) = 0

where the second from last equality holds because y1, y2 are solutions to (+).

Conditions (b) and (c) of item 6 are equivalent. This is the same as proving that the negation of
(b) and the negation of (c) are equivalent.

First, we show that the negation of (c) implies the negation of (b). Now the negation of (c) means
that y1, y2 are linearly dependent on I. This means that there exist numbers c1, c2, not both zero, such
that

c1y1 + c2y2 = 0

on I. Differentiating gives
c1y
′
1 + c2y

′
2 = 0

on I. Evaluating at some point a ∈ I this means that the simultaneous equations

c1y1(a) + c2y2(a) = 0

c1y
′
1(a) + c2y

′
2(a) = 0

have a non-zero solution c1, c2. This can only happen when W (y1, y2)(a) = 0. This is the negation of
condition (b).



Finally, we argue that the negation of condition (b) implies the negation of condition (c). We really
use the fact that y1, y2 are solutions of (+) here. If the negation of (b) holds, then there is a point a ∈ I
such that W (y1, y2)(a) = 0. This means that there is a non-trivial solution (c1, c2 not both zero) to the
equations

c1y1(a) + c2y2(a) = 0

and
c1y
′
1(a) + c2y

′
2(a) = 0

This means that the combination y = c1y1 + c2y2 satisfies (+) and y(a) = 0 and y′(a) = 0. But the
constant function y = 0 is also a solution of (+) which satisfies these initial conditions. By uniqueness,
c1y1 + c2y2 = 0, and so we have shown that y1, y2 are linearly dependent on I. Thus the negation of (b)
implies the negation of (c).

Remarks. Some of the arguments above really used the fact that y1, y2 were solutions to a homogeneous
linear second order ODE. The facts proven in item 6 are not true for general functions.

• The argument about Wronskians not vanishing at a point being equivalent to them not vanishing
at all points of I is one place where we used (+).

Here is an example of two simple functions x2 and x which have Wronskian

W (x2, x) = det

(
x2 x
2x 1

)
= x2 − 2x2 = −x2

Note that W = 0 at input 0, but that W 6= 0 at all other real number inputs. This means that x2

and x are not both solutions of the same homogeneous linear second order ODE defined on all of
R.

• The argument about linearly independent solutions having non-zero Wronskian is another place
where we invoked (+) (through the uniqueness result).

The functions f(x) = x2 and g(x) = x|x| are easily checked to be linearly independent on R.
Both are differentiable functions on R and have derivatives (check this carefully!) f ′(x) = 2x and
g′(x) = 2|x|. Thus their Wronskian is

W (f, g) = det

(
x2 x|x|
2x 2|x|

)
= 2x2|x| − 2x2|x| = 0

is identically 0 on all of R. Again, this means that f and g are not solutions to a second order linear
homogeneous ODE defined on all of R.



Summary of Results for an nth order linear ODE

1. General form of the nth order linear ODE.

y(n) + p1(x)y(n−1) + · · ·+ pn−1(x)y′ + pn(x)y = f(x) (∗)

2. The associated nth order linear homogeneous ODE.

y(n) + p1(x)y(n−1) + · · ·+ pn−1(x)y′ + pn(x)y = 0 (+)

3. Existence and uniqueness of solutions. Suppose that p1(x), . . . , pn(x) and f(x) are all
continuous on an open interval I containing a point a. Given any choice of real numbers b0, . . . , bn−1
there exists a unique solution to (∗) satisfying the initial conditions

y(a) = b0, y′(a) = b1, . . . , y(n−1)(a) = bn−1.

4. General form of solution to (∗). The general solution to (∗) can be written as

y = yp + yh

where yp is a particular solution to (∗) and yh is the general solution to (+).

5. General solution to (+). The general solution to (+) can be written in the form

yh = c1y1 + · · ·+ cnyn

where ci are constants (real numbers) and {y1, . . . , yn} is a set of n linearly independent solutions
to (+).

6. Linear Independence. The collection {y1, . . . , yn} is a set of n linearly independent functions on
the interval I if the only solution to

c1y1 + · · ·+ cnyn = 0

on I is the trivial solution c1 = 0, . . . , cn = 0. That is the only linear combination of the yi which
yields the constant function 0 on I is the trivial linear combination where all coefficients are 0.

7. Linear Independence and Wronskians. In the case y1, . . . , yn are the solutions of the ODE
(+) on I, then the linear independence condition can be rephrased as

W (y1, . . . , yn)(a) 6= 0 for some a ∈ I.

and equivalently (by a version of Abel’s formula) W (y1, . . . , yn) is never 0 on I.

Here W (y1, . . . , yn) denotes the Wronskian of y1, . . . , yn and is defined to be the following determi-
nant

W (y1, . . . , yn) = det


y1 . . . yn
y′1 . . . y′n
...

...

y
(n−1)
n . . . y

(n−1)
n




