Sp'16: MATH 3113-002	Introduction to ODEs	Noel Brady	
Friday 03/11/2016	Midterm II	50 minutes	
Name:	Student ID:	Student ID:	

Instructions.

- 1. Attempt all questions.
- 2. Do not write on back of exam sheets. Extra paper is available if you need it.
- 3. Show all the steps of your work clearly. A final answer on its own is not enough for full points.

Question	Points	Your Score
Q1	25	
Q2	25	
Q3	25	
Q4	25	
TOTAL	100	

Miscellaneous expressions and definitions.

1. Trig Addition, Half Angle.

 $cos(A \pm B) = cos(A) cos(B) \mp sin(A) sin(B)$ cos(2A) = 2 cos²(A) - 1cos(2A) = (1 + cos(2x))/2 $sin(A \pm B) = sin(A) cos(B) \pm cos(A) sin(B)$ cos(2A) = cos²(A) - sin²(A)sin²(x) = (1 - cos(2x))/2sin(2x) = 2 sin(x) cos(x)sin(2x) = 2 sin(x) cos(x)

2. Hyperbolic.

 $\sinh(x) = \frac{1}{2}(e^x - e^{-x}) \qquad \qquad \cosh(x) = \frac{1}{2}(e^x + e^{-x})$

3. Integration by Parts.

 $\int u \, dv = uv - \int v \, du$

4. Integration by substitution.

$$\int f(u(x)) \frac{du}{dx} \, dx = \int f(u) \, du$$

5. Inverse Trig.

$$\frac{d}{dx}\sin^{-1}(x) = \frac{1}{\sqrt{1-x^2}} \qquad \qquad \frac{d}{dx}\tan^{-1}(x) = \frac{1}{1+x^2} \qquad \qquad \int \frac{dx}{x^2+a^2} = \frac{1}{a}\tan^{-1}(\frac{x}{a})$$

6. Trig Substitutions.

For $\sqrt{a^2 - x^2}$ use $x = a \sin(\theta)$ For $\sqrt{a^2 + x^2}$ use $x = a \tan(\theta)$ For $\sqrt{x^2 - a^2}$ use $x = a \sec(\theta)$

7. Some integrals.

$$\int \frac{dx}{x} = \ln |x| + C \qquad \int \tan(x) \, dx = \ln |\sec(x)| + C$$
$$\int \sec(x) \, dx = \ln |\sec(x) + \tan(x)| + C$$

8. First order linear ODE y' + p(x)y = q(x) can be solved by first multiplying across by an integrating factor

$$I = e^{\int p \, dx}$$

- 9. The equation M(x, y)dx + N(x, y)dy = 0 is said to be **exact** if $M_y = N_x$. If it is exact, it can be solved by antidifferentiating M with respect to x and N with respect to y to obtain F(x, y) and then setting F(x, y) = C.
- 10. An ODE of the form y' = f(ax + by + c) can be solved by first making a substitution v = ax + by + c.
- 11. An ODE of the form y' = f(y/x) can be solved by first making a substitution v = y/x.
- 12. The **Bernoulli equation** $y' + p(x)y = q(x)y^n$ can be solved by first making a substitution $v = \frac{1}{y^{n-1}}$.

- 13. Some second order ODEs can be solved by making the substitution v = y'.
- 14. A linear ODE is of the form

$$Ly = f(x) \tag{(*)}$$

where L is a linear differential operator

$$L = y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_n(x)y.$$

The solution to (*) can be written as

$$y = y_h + y_p$$

1

where y_p is a particular solution to (*) and y_h is the solution to the associated homogeneous equation

$$Ly = 0 \qquad (+)$$

15. The general solution of the homogeneous equation is of the form

$$y_h = c_1 y_1 + \dots + c_n y_n$$

where y_1, \ldots, y_n are linearly independent solutions of (+).

16. In the case the a_i are constant functions the solution of (+) is a sum of exponential terms e^{rx} and polynomial times exponential $x^m e^{rx}$ where the r are solutions of the characteristic equation

$$r^{n} + a_{1}r^{n-1} + \dots + a_{n-1}r + a_{n} = 0.$$

The polynomial times exponential terms occur when the root r repeats with multiplicity greater than 1. Euler's identity

$$e^{(a+ib)x} = e^{ax}(\cos(bx) + i\sin(bx))$$

is useful for dealing with the case when the roots are complex numbers.

17. Particular solutions to (*) can be found by the method of undetermined coefficients. Suppose that there is a linear differential operator A such that Af(x) = 0. Then one can look for a particular solution to (*) among the solutions to the homogeneous equation

$$ALy = 0.$$

by finding a suitable linear combination (i.e. determining suitable coefficients) of the linearly independent solutions to ALy = 0.

18. Particular solutions to (*) can also be found by the method of variation of parameters. There is a particular solution of the form

$$y_p = c_1 y_1 + \dots + c_n y_n$$

where the y_i are the linearly independent solutions to (+) and the coefficients c_i are now functions of x. One obtains a system of simultaneous equations in c'_1, \ldots, c'_n whose coefficient matrix has determinant equal to the Wronskian $W(y_1, \ldots, y_n)$.

19. Simple mechanical vibration systems consisting of a mass m attached to a spring (with constant k) in the presence of friction (with constant c) and an external driving force f(t) give rise to a second order linear ODE

$$mx'' + cx' + kx = f(t).$$

Q1]...[25 points] Consider the following ODE.

$$(D^2 - 4D + 5)(D^2 + 4)^2(D - 3)^3D^4y = 0$$

What is its order?

How many independent solutions should it have?

Find the general solution to the ODE above.

Q2]...[25 points] Show that the following four functions are linearly independent on $(-\infty, \infty)$.

 $\sin(x), \qquad \cos(x), \qquad e^{3x}, \qquad xe^{3x}$

Q3]...[25 points] Find a constant coefficient linear differential operator A such that Af(x) = 0 where

$$f(x) = x + e^{2x}.$$

Find the general solution to the following ODE.

$$y^{(2)} - 9y = x + e^{2x}.$$

Q4]...[25 points] Find a constant coefficient linear differential operator A such that Af(x) = 0 where

$$f(x) = \sin(2x).$$

Find the general solution to the following ODE.

$$y^{(2)} + 4y = \sin(2x).$$