
Introduction to Linear Algebra

Linear algebra is the algebra of vectors. In a course on linear algebra you will also learn about the
machinery (matrices and reduction of matrices) for solving systems of linear equations. These two subjects
are intimately related. We will start off gently recalling facts about vectors from your calculus or physics
classes.

Recap. You may recall that a vector has both magnitude and direction. For example, the position
of an object in space (relative to a fixed origin or reference point), the velocity and the acceleration of an
object in space are all examples of vectors. Vectors can be represented by directed line segments in the
plane (2-d vectors) or in space (3-d vectors). The line segment comes equipped with a little arrow at one
end which specifies the direction of the vector, and the length of the line segment specifies the magnitude
of the vector. Any two line segments which are of the same length and point in the same direction (in
particular the segments are parallel) represent the same vector.

There is another way to represent vectors which is much more useful, and which is much more amenable
to generalization. Think about locating a directed line segment in the plane R2 or in 3-space R3 so that
its starting point is at the origin. Then the line segment (and its direction) is completely determined by
the coordinates of the other endpoint. Thus we can use an ordered pair of numbers to represent a 2-d
vector (and an ordered triple of numbers to represent a 3-d vector). Here are some examples

〈1, 1〉 〈1, 2, 3〉

This angle-bracket notation for vectors should be familiar from your calculus book. This way of repre-
senting vectors can very easily generalize to 4-d (e.g., 〈2, 3, 1, 5〉) or to n-d (e.g., 〈a1, . . . , an〉) where our
geometric intuition has a much harder time.

Algebra of vectors. There are two fundamental algebraic operations one can perform with vectors.
One can add two vectors and one can multiply a vector by a scalar.

The sum of two vectors is achieved by constructing a triangle (or a parallelogram) when the vectors
are given to you as directed line segments. In coordinates, the sum is very easy to describe. For example
in 3-d the sum of two vectors is given by

〈x, y, z〉+ 〈a, b, c〉 = 〈x + a, y + b, z + c〉

and this generalizes nicely to arbitrary dimensions

〈a1, . . . , an〉+ 〈b1, . . . , nn〉 = 〈a1 + b1, . . . , an + bn〉

The scalar multiple of a directed line segment is obtained by stretching the line segment by the scalar
factor (if the scalar is positive), or scaling the line segment by the absolute value of the scalar and then
reversing the direction (if the scalar is negative). In coordinates scalar multiplication is easy to describe

c〈x, y, z〉 = 〈cx, cy, cz〉

and more generally
c〈a1, . . . , an〉 = 〈ca1, . . . , can〉

The collection R2 of all 2-d vectors is an example of a vector space. Another example is R3 the
space of all 3-d vectors, and so is Rn the space of all n-d vectors. Note that R plays two roles here: is
the vector space of all 1-d vectors, it is also the collection of all scalars.

Linear transformations. Suppose we are given two vector spaces V and W . A function

L : V →W



is said to be a linear transformation (or linear mapping) if it respects addition and scalar multiplication.
That is, if v1 and v2 are any vectors in V and if c ∈ R is a scalar, then

L(v1 + v2) = L(v1) + L(v2)

and
L(cv1) = cL(v1)

Note that the addition and scalar multiplication on the RHS is in the vector space W .
Let’s build an intuition about linear transformations by considering examples.

1. A linear transformation L1 : R → R is a very special type of function. Indeed, for any x ∈ R we
have

L1(x) = L1(x1) = xL1(1)

Here we write the vector x as being a scalar multiple of the vector 1 (where the scalar is x) and
remember that L1 respects scalar multiplication. Note that this equation tells us that the value
L1(1) completely determines all the other values of L1. But L1(1) is just some number, call it a.
Then the function L1 is of the form L1(x) = ax. This is a straight line function.

2. A linear transformation L2 : R2 → R is a very special type of function. Indeed, for any 〈x, y〉 ∈ R
we have

L2(〈x, y〉) = L2(x〈1, 0〉+ y〈0, 1〉) = xL2(〈1, 0〉) + yL2(〈0, 1〉)

There are two things going on here. First, every vector in R2 is a sum of scalar multiples of two
special vectors 〈1, 0〉 and 〈0, 1〉. In your calculus book you have seen these vectors denoted by
i = 〈1, 0〉 and j = 〈0, 1〉, and seen them called unit basis vectors for R2. Second, the linearity of
L2 implies that the output L2(〈x, y〉) is equal to a sum of multiples of the two particular outputs
L2(〈1, 0〉) and L2(〈0, 1〉). These are just numbers, denote them by a and b respectively. This means

L2(〈x, y〉) = ax + by

3. A similar computation using the basis vectors i = 〈1, 0, 0〉, j = 〈0, 1, 0〉, and k = 〈0, 0, 1〉 tells us
that a linear function L3 : R3 → R is of the form

L3(〈x, y, z〉) = ax + by + cz

where the numbers a, b, c are just the outputs of L3 on the basis vectors: a = L3(i), b = L3(j), and
c = L3(k).

Comments.

1. You might want to think about and write down the form of a linear function L : Rn → R.

2. You can drop the 〈〉 brackets and write these functions more like calc 3 functions. L1(x) = ax,
L2(x, y) = ax + by, and L3(x, y, z) = ax + by + cz.

3. Show that a general linear function L : Rn → R is of the form L(x1, . . . , xn) = a1x1 + · · · + anxn
where the ai are real numbers, and ai is the output of L on the basis vector 〈0, . . . , 0, 1, 0, . . . , 0〉
which has a 1 in the ith position and 0’s elsewhere.



Linear Equations. Suppose that L : Rn → R is a linear transformation. Let us think about the
solutions to linear equations of the form

L(v) = d

where d ∈ R and v ∈ Rn is an n–tuple of real numbers. Start with a few examples.

1. If L(x, y) = ax + by then L(x, y) = d becomes the equation ax + by = d. We know that the set of
solutions is a straight line in the plane, R2.

2. If L(x, y, z) = ax + by + cz then L(x, y, z) = d becomes the equation ax + by + cz = d. We know
that the set of solutions is a plane in 3-d space, R3.

We have a good intuition about lines and planes, and so have a good intuition about these solution
sets. We might even convince ourselves that solutions to the equation L(x1, . . . , xn) = d is some type of
(n− 1)–dimensional hyperplane in Rn.

However, it is worthwhile thinking about these solution sets in another way. A way which is remi-
niscent of the parametric descriptions of lines and planes that you may recall from your vector calculus
class. Let’s revisit the two examples above in detail.

1. Examples of the form ax + by = d. For concreteness take L(x, y) = 2x + 3y and d = 3, so that the
equation L(x, y) = d becomes

2x + 3y = 3 (∗)

We know from high school algebra that the set of solutions forms a line in the plane. Let us think
about the solution set in another way which is closely related to the parametric description of a
line.

If (x1, y1) and (x2, y2) are two solutions to (∗) then, since L is linear,

L((x1, y1)− (x2, y2)) = L(x1, y1)− L(x2, y2) = 3− 3 = 0

That is the difference between any two solutions of (∗) is a solution of the associated homogeneous
equation

2x + 3y = 0 (∗∗)
This equation is called homogeneous because if (x, y) is a solution then so is any multiple (cx, cy).
The general solution to (∗∗) is easier to describe. The equation implies that y = −2x/3, so the
most general solution is (x,−2x/3) for any real number x. Let’s clear the 3 in the denominator,
and write c in place of x. The general solution of (∗∗) is the collection of all 2-d vectors of the form

c(3,−2) where c ∈ R.

Finally, we can see by substitution that (0, 1) is a solution to (∗). If (x, y) is a general solution of
(∗) then (x, y)− (0, 1) is a general solution of (∗∗). Thus

(x, y)− (0, 1) = c(3,−2) where c ∈ R.

or rewriting
(x, y) = (0, 1) + c(3,−2) where c ∈ R. (+)

This agrees with our geometric intuition about the line 2x + 3y = 3. In order to get to a general
point on this line, you can go to the point (0, 1) which lies on the line, and then travel a multiple (c
times in this case) of a parallel vector to the line. This description of points on the line 2x+ 3y = 3
is called a parametric description of the line. Here c is the parameter.

Algebraically, the general solution (+) has a nice description. The general solution of equation (∗)
is the sum of a particular solution of (∗) and the general solution of the associated homogenous
equation (∗∗).



2. Here is a second example. Let L(x, y, z) = 2x+ 3y + z be a linear map from R3 to R. The equation

L(x, y, z) = 6 (∗)

has a solution set which we recognize from our calculus course to be the plane 2x + 3y + z = 6 in
3-d space. However, we can also work using linearity to obtain another description of the solution
set.

As above, if (x1, y1, z1) and (x2, y2, z2) are two solutions to (∗) then their difference (x1, y1, z1) −
(x2, y2, z2) satisfies (by linearity of L)

L((x1, y1, z1)− (x2, y2, z2)) = L(x1, y1, z1)− L(x2, y2, z2) = 6− 6 = 0

That is, the difference of two solutions of (∗) is a solution of the associated homogeneous equation

2x + 3y + z = 0 (∗∗)

This homogeneous equation is easier to deal with. By inspection we can read off two particular
solutions of (∗∗); for example, (1, 0,−2) and (0, 1,−3). If (x, y, z) is a general solution of (∗∗) then
we know that 2x+ 3y+ z = 0 or, in other words, z = −2x− 3y. Then our general solution becomes

(x, y,−2x− 3y) = (x, 0,−2x) + (0, y,−3y) = x(1, 0,−2) + y(0, 1,−3)

Thus the general solution of (∗∗) can be expressed in a 2-parameter fashion

c1(1, 0,−2) + c2(0, 1,−3)

where c1, c2 ∈ R.

Noe by inspection that (1, 1, 1) is a particular solution to equation (∗).
Finally, arguing as in example 1 we get the following. The general solution of (∗) is the sum of a
particular solution to (∗) and the general solution of the associated homogeneous equation (∗∗).

(x, y, z) = (1, 1, 1) + c1(1, 0,−2) + c2(0, 1,−3)

As before, there is a nice geometric interpretation. In order to get to a general point on the plane
2x+ 3y + z = 6 one first gets to the point (1, 1, 1) in this plane, and then travels along multiples of
two independent (i.e., not parallel to each other) vectors lying parallel to this plane. This is called
the parametric description of the plane. In your calculus class you may have used the variables s
and t for parameters instead of c1 and c2.

3. Do a similar analysis for the n-dimensional case. Argue that the general solution to a linear equation
of the form

a1x1 + · · ·+ anxn = b (∗)

is the sum of a particular solution (p1, . . . , pn) to (∗), and the general solution to the associated
homogeneous equation.

a1x1 + · · ·+ anxn = 0 (∗∗)

In turn, you can argue that the most general solution to (∗∗) is a sum

c1v1 + · · ·+ cn−1vn−1

where
vi = (0, . . . , 0,−an, 0, . . . , 0, ai)



here we have −an in position i and ai in position n and zeros elsewhere. We are assuming that
an 6= 0 here. Think about what you might use if an = 0.

In summary, the general solution of (∗) has an (n− 1) parameter description

(x1, . . . , xn) = (p1, . . . , pn) + c1v1 + · · ·+ cn−1vn−1

where the parameters c1, . . . , cn−1 ∈ R and where the vi are defined above.

The message to take away. If L : Rn → R is a linear transformation, then the general solution of a
linear equation

L(v) = w

can be written as
v = v0 + c1v1 + · · ·+ cn−1vn−1

where

• v0 is a particular solution to (∗)

• c1, . . . , cn−1 ∈ R are arbitrary parameters, and

• v1, . . . ,vn−1 are solutions of the associated homogeneous equation L(v) = 0.

It is important to note that what makes all this work is the fact that L is a linear transformation
which respects addition and scalar multiplication. We will use these facts again in a setting which a
priori looks nothing like the above.

The ODE setting. We know of other objects that can be added and multiplied by scalars; functions f :
R→ R. We also know of a transformation of functions which respects addition and scalar multiplication;
differentiation. Let’s make this more precise.

The vector spaces Rn and R will be replaced by the collection V of all infinitely differentiable functions:

V = {f | f : R→ R is infinitely differentiable }

and L will be replaced by a linear differential operator. The key linear aspects of the previous setup
remain in this setting.

• two infinitely differentiable functions can be added to yield a third. The addition is defined point-
wise by adding outputs.

(f + g)(x) = f(x) + g(x)

• an infinitely differentiable function can be multiplied by a scalar (c ∈ R) to yield another.

(cf)(x) = c(f(x))

• The operation of differentiation

D(f) =
df

dx
is a linear transformation D : V → V . Indeed, it respects sums

D(f + g) =
d(f + g)

dx
=

df

dx
+

dg

dx
= D(f) + D(g)

(here we are using a result from calc 1), and it respects scalar multiplication

D(cf) =
d(cf)

dx
= c

df

dx
= cD(f)

(another calc 1 result).



You should check that iterations of D, namely D2, D3 etc (which denote the second derivative, third
derivative etc), are also linear. So also is the operation of multiplication by an infinitely differentiable
function a(x)

a(x)(f + g) = a(x)f + a(x)g

and
a(x)(cf) = ca(x)f for c ∈ R.

Combining the above we obtain the fact that

L = an(x)Dn + · · ·+ a1(x)D + a0(x)

is a linear transformation L : V → V .
The ODE

Ly = f(x) (∗)

written explicitly as
(an(x)Dn + · · ·+ a1(x)D + a0(x))y = f(x)

which becomes
an(x)Dny + · · ·+ a1(x)Dy + a0(x)y = f(x) (∗)

is called an nth order linear differential equation. It should not come as much of a surprise to you that
the general solution of (∗) can be written as

y = yp + yh (+)

where yp is a particular solution of (∗) and yh is the general solution of the associated homogeneous
equation

Ly = 0 (∗∗)

It might not also be a surprise that the general solution to (∗∗) can be given a description using some
number of parameters (n in this case). We will see details in class. For now it is good to see the analogy
with simpler linear equations, lines, planes etc.

Exercise. The first order linear ODE
y′ + p(x)y = q(x)

can be written in the form
L(y) = q(x)

where
L = D + p(x)

is a linear differential operator. Check that the solution we met in chapter 1, namely

y = e−
∫
p dx

(∫
q(x)e

∫
p dx dx + C

)
is really the sum of two functions. One is a particular solution to L(y) = q(x) and the other is the general
(one-parameter) solution to the associated homogeneous equation L(y) = 0. Woohoo! This example fits
into our general linear framework.


