
Linear Systems of ODEs

1. Vector valued functions. Let

x =


x1(t)
x2(t)

...
xn(t)


be an n × 1 column vector of functions of t. Recall from your vector calculus class that we define
its derivative to be

Dx =
dx

dt
=


x′1(t)
x′2(t)

...
x′n(t)


2. Linear System. An nth order linear system of ODEs is a system of ODEs of the form

dx

dt
= Ax + f (∗)

where x and f are n × 1 column vectors of functions of t and A is an n × n matrix whose entries
are functions of t.

The functions in A and f are given to you, and you have to find a column vector x of n functions
of t which satisfies (∗).

3. Homogeneous system. The linear system is said to be homogeneous if f = 0. That is

dx

dt
= Ax (+)

is a homogeneous system. It is called the homogeneous system associated to (∗).
We can write equation (+) as

(D −A)x = 0

so that it looks more like the format of homogeneous linear ODEs from before.

4. Examples/Applications. Linear systems of ODEs are very useful. For example the general nth
order linear ODE

y(n) + an−1(t)y
(n−1) + · · ·+ a0(t)y = f(t)

can be encoded as the linear system

dx1(t)

dt
= x2(t)

dx2(t)

dt
= x3(t)

...
...

dxn−1(t)

dt
= xn(t)

and
dxn(t)

dt
= f(t)− a0(t)x1 − · · · − an−1(t)xn



where x1(t) = y, x2(t) = y′, . . . , xn(t) = y(n−1). In other words,

D


x1
x2
...

xn−1
xn

 =


0 1 0 . . . 0
0 0 1 . . . 0

0 0 0
. . .

...
0 0 0 . . . 1
−a0 −a1 −a2 . . . −an−1




x1
x2
...

xn−1
xn

+


0
0
...
0
f(t)


Also, more complex mass spring systems (involving several coupled masses and springs), complex
RLC circuit diagrams (with several loops), and cascading mixing problem setups with feedback
pipes can all be encoded using linear systems.

5. Existence/Uniqueness. Suppose that the functions aij(t) and fi(t) in the linear system (∗) above
are all continuous on the open interval I, and let a be a point of I. Then given any b ∈ Rn there
exists a unique solution x to (∗) defined on I such that

x(a) = b.

6. General solution of a linear system. This theory mirrors the theory for nth order ODEs
precisely.

The general solution to the system (∗) is a sum

x = xp + xh

where xp is a particular solution to (∗) and xh is the general solution to the associated homogeneous
equation (+).

Furthermore, the general solution to the nth order homogeneous equation (+) can be written as a
linear combination

xh = c1x1 + · · ·+ cnxn

where the ci are real numbers and the xi form a linearly independent set of solutions to (+).

7. Linear independence. The set of solutions x1, . . . ,xn to (+) is linearly independent if the only
linear combination

c1x1 + · · ·+ cnxn = 0

yielding the zero vector is the trivial combination c1 = 0, . . . , cn = 0.

Equivalently, the solutions x1, . . . ,xn to (+) form a linearly independent set if the Wronskian

W (x1, . . . ,xn) 6= 0

where the Wronskian is defined to be the determinant of the n × n matrix with column vectors
x1, . . . ,xn.

8. Solving linear systems of ODEs by elimination. From now on we focus on linear systems
where the coefficient matrix A consists of n2 constants. The following method can be generalized
to work for nth order linear systems. Suppose L1, . . . , L4 are constant coefficient linear differential
operators and x, y, f1, f2 are functions of t. Then the system

L1x+ L2y = f1

L3x+ L4y = f2



can be solved by eliminating y (or x) and considering the following ODEs in x and y alone

(L1L4 − L2L3)x = L4f1 − L2f2

and
(L1L4 − L2L3)y = L1f2 − L3f1

This may be written symbolically as

det

(
L1 L2

L3 L4

)
x = det

(
f1 L2

f2 L4

)
and

det

(
L1 L2

L3 L4

)
y = det

(
L1 f1
L3 f2

)
9. Eigenvalues and Eigenvectors. A (real or possibly complex) number λ is said to be an eigenvalue

of the n × n matrix A if there is a non-zero vector v ∈ Cn (that is, a column vector with real or
complex entries) such that

Av = λv

The non-zero vector v is said to be an eigenvector of A corresponding to the eigenvalue λ (or a
λ–eigenvector).

Note that if v is a λ–eigenvector of A, then the matrix equation

(A− λI)v = 0

has a non-zero solution v. Here I is the n×n identity matrix. This equation has a non-zero solution
when the determinant of (A− λI) is zero.

Let’s summarize the procedure for finding eigenvalues and eigenvectors of A.

• First, one finds eigenvalues of A by solving the characteristic equation

det(A− λI) = 0.

• Next, for each eigenvalue λ, one finds λ–eigenvectors by finding non-zero solutions to the
equation

(A− λI)v = 0.

10. Eigenvalue/Eigenvector Problems. It is good to have an understanding of matrices and linear
transformations from the eigenvalue/eigenvector perspective. We will see why this is useful for
systems of ODEs shortly. But eigenvectors and eigenvalues are important in many applications
of mathematics to physics, engineering, biology, statistics and data analysis. The Google page-
rank algorithm (the theoretical framework behind the very successful Google search engine and a
multibillion dollar enterprise) is an algorithm for solving a huge eigenvalue-eigenvector problem.

11. Solving homogeneous linear systems of ODEs by the eigenvalue method. Let A be
an n × n matrix with constant entries. Suppose that λ is an eigenvalue of A and that v is a
λ–eigenvector. Then the homogeneous system

dx

dt
= Ax (+)

has a solution
x(t) = eλtv (#)

This result is fundamental. This means that in order to find a general solution to (+) we should



• Find the eigenvalues of A.

• For each eigenvalue λ above, find the largest collection of linearly independent λ–eigenvectors.

• If we obtain a linearly independent collection of n eigenvectors v1, . . . ,vn above and form the
corresponding solutions x1(t), . . . ,xn(t) using the formula in (#), then

xh(t) = c1x1(t) + · · ·+ cnxn(t) = c1e
λ1tv1 + · · ·+ cne

λntvn

is the general solution to (+).

Sounds cool. And it is cool when it works! There are a few issues to deal with. We list them here
and describe how to deal with them in subsequent numbered items.

• One, we have to be careful interpreting things in the case that an eigenvector λ is not a
real number. In this case, the λ–eigenvectors will have complex entries, and we will need to
use Euler’s identity to obtain expressions for solutions to the original real number coefficient
homogeneous system (+).

• Two, we may not obtain a collection of n linearly independent eignevectors. This is a more
serious issue. In this case, we will have to work with generalized eigenvectors and use formulas
which are reminiscent of how we dealt with repeated roots in the case of a linear nth order
ODE.

12. Dealing with a non-real eigenvalue λ. In the case λ is not a real number you should still
proceed as in the real case. That is, you should solve

(A− λI)v = 0

to obtain λ–eigenvectors with complex entries. Now, the solution

x(t) = eλtv = u(t) + iv(t)

will decompose as a sum u(t) + iv(t) of real and imaginary vectors. Then you use u(t) and v(t)
as the two real vector solutions to the original linear system. This is formally identical to the way
we dealt with complex solutions to the characteristic equation in the case of linear ODEs, the only
difference now is that we are working with column vectors.

13. Working with generalized eigenvalues. An eigenvector λ is a solution to the characteristic
equation.

det(A− λI) = 0

As such λ may have multiplicity m. It may happen that you can only find r linearly independent λ–
eigenvectors where r < m. In this case you should look for m− r generalized eigenvectors. Suppose
v1 is a λ–eigenvector. Then generalized λ–eigenvectors v2, . . . ,vk are found by solving (recursively)

(A− λI)v2 = v1 , . . . , (A− λI)vk = vk−1

In this case

x1 = eλtv1

x2 = eλt(tv1 + v2)

x3 = eλt( t
2

2 v1 + tv2 + v3)

...
...

xk = eλt( tk−1

(k−1)!v1 + · · ·+ tvk−1 + vk)



form a chain of k linearly independent solutions to the linear system.

Note that for a given eigenvalue λ, there may be several independent λ–eigenvectors, each giving
rise to its own chain of generalized λ–eigenvectors (and these chains may be of different lengths).
The key algebraic fact is that the sum of the lengths of all these chains will be equal to m, the
multiplicity of the eigenvalue λ.

14. The matrix exponential. Let A be an n × n matrix. We denote the matrix exponential of tA
by etA and define it to be the n× n matrix given by the series

etA = I + tA+
t2

2!
A2 +

t3

3!
A3 + · · ·

Properties.

• et0 = I where 0 is the n× n matrix with all entries 0 and I is the identity n× n matrix.

• etI = diag(et, . . . , et).

• d
dte

tA = AetA.

• If AB = BA, then etA+tB = etAetB.

• Suppose that

J =



λ 1 0 . . . 0

0 λ 1
...

. . .
. . . 0

... λ 1
0 . . . 0 λ


with λ on the diagonal, 1 just above the diagonal, and 0 everywhere else. Then we can write
J = λI +N where N = J − λI has 0 on the diagonal.

In this case NλI = λIN and so

etJ = etλI+tN = etλIetN = etλetN

where

etN =



1 t t2

2! . . . tn−1

(n−1)!

0 1 t
...

. . .
. . . t2

2!
... 1 t
0 . . . 0 1


15. The matrix exponential and homogeneous linear systems of ODEs. The homogeneous

system
dx

dt
= Ax (+)

has a solution
x(t) = etAx(0).

By choosing x(0) to be the standard basis vectors, we obtain n linearly independent solutions to
(+). Note that these solutions are precisely the column vectors of the matrix exponential etA.


