
Linear nth Order ODEs with constant coefficients.

1. The general form of a linear nth order ODE with constant coefficients is

y(n) + a1y
(n−1) + · · ·+ an−1y

′ + any = f(x) (∗)

where the ai are real numbers and f(x) is continuous on some interval I. This can be written as

Ly = f(x)

where L is the linear differential operator

L = Dn + a1D
n−1 + · · ·+ an−1D + an.

2. We will focus first of all on solving the associated homogeneous equation

Ly = 0 (+)

This is achieved by looking for solutions of the form y = erx. Substituting into (+) gives the
characteristic equation

rn + a1r
n−1 + · · ·+ an−1r + an = 0. (#)

3. The characteristic equation is a polynomial equation. You may recall solving certain quadratic and
cubic equations in high school by first factoring the polynomial on the left hand side (LHS). There
is a theorem called The Fundamental Theorem of Algebra which states that the LHS of (#) can
always be factored into a product of n linear factors (r−α) provided you allow the possibility that
some of the α may be complex numbers. Remember, if (r− α) is a factor, then r = α is a solution
to the equation (also known as a root of the polynomial).

A factor (r− α) may occur with some power, such as (r− α)m; in this case we say that the root α
repeats with multiplicity m.

4. The cool fact about constant coefficient linear differential operators is that the linear terms commute

(D − α)(D − β) = (D − β)(D − α)

This means that we can “factor” and “rearrange” nth order constant coefficient linear differential
operators L in just the same way that we factored and rearranged degree n polynomials in high
school.

Note that this property crucially relies on the fact that α and β are constants. For example, you
should verify that

(D − x)D 6= D(D − x)

by evaluating both sides on y (a function of x).

5. Now we can say what linearly independent functions one can use to form the general solution of
(+). Recall that a fundamental set consists of n solutions with the property that any solution can
be written as a linear combination of these n.

• If r is a real root with multiplicity m, then

erx, xerx, . . . , xm−1erx

are m functions in the fundamental set. This is one function erx in the case m = 1.



• If r + iω is a complex root with multiplicity m, then its complex conjugate r − iω is another
root with multiplicity m and

erx cos(ωx), erx sin(ωx), xerx cos(ωx), xerx sin(ωx), . . . , xm−1erx cos(ωx), xm−1erx sin(ωx)

are 2m functions in the fundamental set. This is two functions erx cos(ωx), erx sin(ωx) in the
case m = 1.

This is all there is to say about the general solution of a homogeneous linear nth order ODE with
constant coefficients. Notice that it is all polynomial algebra (roots of polynomial equations), and
that there is no antiderivatives to compute!

6. Proof of the facts about fundamental sets. In the case r is a real root with multiplicity m,
then (D − r)m is a factor of the linear differential operator L. Use the product rule to verify that
for any function u

(D − r)(erxu) = erxDu

Thus, (D − r)m(erxu) = erxDmu and so (D − r)m(erxu) = 0 gives the condition Dmu = 0. Thus u
is a polynomial of degree m− 1, and we have proven the first bullet point above. It is an exercise
to check that erx, xerx, . . . , xm−1erx are linearly independent.

This same reasoning holds for complex roots r ± iω of multiplicity m. First find the solutions
corresponding to (D − (r ± iω))y = 0 and then multiply them by powers of x up through xm−1.
From our class notes on complex numbers the solution e(r±iω)x can be rewritten using Euler’s
identity as

erx(cos(ωx)± i sin(ωx))

and this gives the two independent real solutions erx cos(ωx) and erx sin(ωx).

7. Solving (∗) for non-zero RHS — Undetermined Coefficients. The following algorithm finds
a particular solution to (∗) in the case that the RHS function f(x) is a non-zero function of one of
the following types:

• a constant function

• an exponential erx

• a sinusoid cos(ωx) or sin(ωx)

• erx cos(ωx) or erx sin(ωx)

• a positive integer power of x times any of the above.

Step 1. Find a constant coefficient linear differential operator A with the property that A(f) = 0.

Step 2. Notice that if yp is a particular solution to (∗), then

AL(yp) = Af = 0 (++)

Step 3. Thus yp can be expressed as a linear combination

c1y1 + · · ·+ cNyN

of the fundamental solutions to the homogeneous equation (++) (which has order N > n).

Step 4. Rule out multiples of the n fundamental solutions which happen to be solutions of (+)
(that is, of Ly = 0).

Step 5. Plug the general linear combination of the remaining (N − n) solutions into (∗) and
determine the coefficients cj which give a particular solution yp.



8. Solving (∗) for non-zero RHS — Variation of Parameters. This method also produces a
particular solution yp of (∗) in the case that the RHS f(x) is non-zero. It works for more general
RHS functions than the Undetermined Coefficients method, although it requires more algebra and
some antidifferentiation. Here are the steps.

Step 1. Write down the general solution

y = c1y1 + · · ·+ cnyn

of the associated homogeneous equation (+).

Step 2. Replace the parameters ci by functions ci(x) (that is, allow the parameters to vary) and
consider a solution of (∗) of the form

yp = c1(x)y1 + · · ·+ cn(x)yn

Step 3. Solve the equations

c′1(x)y1 + · · · + c′n(x)yn = 0

c′1(x)y′1 + · · · + c′n(x)y′n = 0

... =
...

c′1(x)y
(n−1)
1 + · · · + c′n(x)y(n−1)n = f(x)

for the functions c′i(x). This is possible since the yi are linearly independent solutions to a homo-
geneous ODE and so W (y1, . . . , yn) 6= 0.

Step 4. Integrate to obtain functions c1(x), . . . , cn(x).

Step 5. A particular solution to (∗) is given by

yp = c1(x)y1 + · · ·+ cn(x)yn.


