First Order Equations - Methods

Here is a summary of our methods of solving various first order ODEs (and some second order ODEs).

1. Repeated antidifferentiation.

$$
\begin{gathered}
\text { ODE: } \quad \frac{d y}{d x}=f(x) \\
\text { SOL: } \quad y=\int f(x) d x+C
\end{gathered}
$$

Also works for $y^{\prime \prime}=f(x)$ etc. Good for acceleration, velocity, position problems.

2. Separable ODE.

$$
\begin{aligned}
\text { ODE: } & & \frac{d y}{d x} & =f(x) g(y) \\
\text { SOL: } & & \int \frac{d y}{g(y)} & =\int f(x) d x+C
\end{aligned}
$$

3. First order linear.

$$
\text { ODE: } \quad \frac{d y}{d x}+p(x) y=q(x)
$$

SOL: Multiply the equation across by $I(x)=e^{\int p(x) d x}$. The LHS will become the output of a product rule: $\frac{d(I(x) y)}{d x}$, and so the equation is solved by antidifferentiating the new RHS, $I(x) q(x)$, and then dividing by $I(x)$.
4. Exact equations.

$$
\text { ODE: } \quad M(x, y)+N(x, y) \frac{d y}{d x}=0
$$

SOL: This is exact if $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$. In such case it is possible to find a function $F(x, y)$ that satisfies

$$
\begin{aligned}
& F(x, y)=\int M(x, y) d x+f(y) \\
& F(x, y)=\int N(x, y) d y+g(x)
\end{aligned}
$$

Solutions to the ODE are level curves of F

$$
F(x, y)=C
$$

5. Substitution Methods.

$$
\text { ODE: } \quad \frac{d y}{d x}=f(v)
$$

for some $v=v(x, y)$.
SOL: Rewrite $\frac{d v}{d x}=\frac{\partial v}{\partial x}+\frac{\partial v}{\partial y} \frac{d y}{d x}$. Use this to rewrite the equation as an equation in v^{\prime}, v, x.

6. Bernoulli Equations.

$$
\text { ODE: } \quad \frac{d y}{d x}+q(x) y=p(x) y^{n}
$$

for some $n \in \mathbb{R}$.
SOL: Use the substitution $v=1 / y^{(n-1)}$ to rewrite the equation as a linear first order equation in v^{\prime}, v, and x :

$$
\frac{d v}{d x}+(1-n) p(x) v=(1-n) q(x)
$$

7. Second order \longrightarrow First order.

$$
\text { ODE: } \quad F\left(x, y^{\prime}, y^{\prime \prime}\right)=0
$$

SOL: Use the substitution $v=y^{\prime}$ to get a first order equation $F\left(x, v, v^{\prime}\right)=0$.

$$
\text { ODE: } \quad F\left(y, y^{\prime}, y^{\prime \prime}\right)=0
$$

where derivatives are with respect to x.
SOL: Use the substitution $v=y^{\prime}$ and $y^{\prime \prime}=v^{\prime}=\frac{d v}{d y} \frac{d y}{d x}=\frac{d v}{d y} v$ to get a first order equation $F\left(y, v, v \frac{d v}{d y}\right)=0$ in y, v and $\frac{d v}{d y}$. From the solution $v=v(y)$ we obtain

$$
x=\int \frac{d x}{d y} d y+C=\int \frac{d y}{v}+C
$$

which is a solution to the original equation.

