Exact Equations - Method

A first order ODE of the form

$$
\begin{equation*}
M(x, y)+N(x, y) \frac{d y}{d x}=0 \tag{A}
\end{equation*}
$$

or equivalently (using the notation of differentials)

$$
\begin{equation*}
M(x, y) d x+N(x, y) d y=0 \tag{B}
\end{equation*}
$$

is said to be exact if M and N satisfy the following test:

$$
\begin{equation*}
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} \tag{C}
\end{equation*}
$$

In this case (under mild continuity and differentiability assumptions) we can find a function $F(x, y)$ such that $\frac{\partial F}{\partial x}=M$ and $\frac{\partial F}{\partial y}=N$. Do this by anti-differentiating and comparing:

$$
\begin{aligned}
& F(x, y)=\int M(x, y) d x \\
& F(x, y)=\int N(x, y) d y
\end{aligned}
$$

Once we have $F(x, y)$ the general solution to the $\operatorname{ODE}(A)$ or (B) is given by the one-parameter family of curves

$$
F(x, y)=C
$$

Exact Equations - Rationale

The rationale is obtained by reversing how we think about things. Start with a one-parameter family of curves, and find an ODE that they satisfy. Then compare this ODE with (A) above.

Recall that the level curves (contour lines) of a function $F(x, y)$ of two variables are defined by

$$
F(x, y)=C
$$

where C is a constant. By varying C we obtain a one-parameter family of curves in the $x y$-plane.
Now suppose that the C-level curve of $F(x, y)$ is described parametrically by $(x(t), y(t))$. Then $F(x(t), y(t))=C$ and differentiating across by t gives

$$
\frac{d F(x(t), y(t))}{d t}=\frac{d C}{d t}=0
$$

Using the chain rule on the left side gives

$$
\frac{\partial F}{\partial x} \frac{d x}{d t}+\frac{\partial F}{\partial y} \frac{d y}{d t}=0
$$

Dividing across by $\frac{d x}{d t}$ and recalling that $\frac{d y}{d x}=\frac{d y}{d t} / \frac{d x}{d t}$ for parametric curves, we obtain the following differential equation that the level curves $F(x, y)=C$ satisfy:

$$
\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y} \frac{d y}{d x}=0
$$

This looks just like (A) above when $M=\frac{\partial F}{\partial x}$ and $N=\frac{\partial F}{\partial y}$. Now it is easy to see where the test (C) comes from; it is a manifestation of Clairaut's theorem on mixed partial derivatives:

$$
\frac{\partial M}{\partial y}=\frac{\partial^{2} F}{\partial y \partial x}=\frac{\partial^{2} F}{\partial x \partial y}=\frac{\partial N}{\partial x} .
$$

