Axioms of addition and multiplication of real numbers

The set of real numbers \mathbb{R} is closed under addition (denoted by +) and multiplication (denoted by \times or simply by juxtaposition) and satisfies:

1. Addition is commutative.

$$
x+y=y+x
$$

for all $x, y \in \mathbb{R}$.
2. Addition is associative.

$$
(x+y)+z=x+(y+z)
$$

for all $x, y, z \in \mathbb{R}$.
3. There is an additive identity element. There is a real number 0 with the property that

$$
x+0=x
$$

for all $x \in \mathbb{R}$.
4. Every real number has an additive inverse. Given any real number x, there is a real number $(-x)$ so that

$$
x+(-x)=0
$$

5. Multiplication is commutative.

$$
x y=y x
$$

for all $x, y \in \mathbb{R}$.
6. Multiplication is associative.

$$
(x y) z=x(y z)
$$

for all $x, y, z \in \mathbb{R}$.
7. There is a multiplicative identity element. There is a real number 1 with the property that

$$
x .1=x
$$

for all $x \in \mathbb{R}$. Furthermore, $1 \neq 0$.
8. Every non-zero real number has a multiplicative inverse. Given any real number $x \neq 0$, there is a real number $\frac{1}{x}$ so that

$$
x \frac{1}{x}=1
$$

9. Multiplication distributes over addition

$$
x(y+z)=x y+x z
$$

for all $x, y, z \in \mathbb{R}$.

Miscellaney.

1. Least Principle. Every non-empty subset of \mathbb{N} contains a least element.
2. Theorem. (Division Algorithm) Let $d \in \mathbb{N}$ and $a \in \mathbb{Z}$. Then there exists unique integers $q, r \in \mathbb{Z}$ such that

$$
a=q d+r
$$

where $0 \leq r<d$.
3. Proposition [Euclidean Algorithm]. Let a and b be integers and b positive. By the Division Algorithm there are unique integers q, r so that

$$
a=b q+r \quad \text { and } 0 \leq r<b
$$

Then

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)
$$

4. Proposition (Bezout's identity). Let a, b be integers, not both zero. Then there exist integers l, m such that

$$
\operatorname{gcd}(a, b)=l a+m b
$$

5. Corollary (Euclid's Lemma). Let p, b, c be integers, and p a prime number. If $p \mid b c$ and $p \nmid b$, then $p \mid c$.
6. Theorem (Fundamental Theorem of Arithmetic). Every integer a greater than or equal to 2 can be expressed as a product of prime numbers. That is

$$
a=p_{1} \ldots p_{n}
$$

where the p_{j} are primes. This includes the special case of $n=1$ and so a is prime. Furthermore, this expression is unique if we require that the primes be listed in non-decreasing order.

$$
p_{1} \leq p_{2} \leq \cdots \leq p_{n}
$$

7. Theorem (Fermat's Little Theorem). Let p be a prime number and let a be a nonzero element of \mathbb{Z}_{p}. Then

$$
a^{p-1} \equiv 1 \quad \bmod p
$$

Miscellaney.

1. Chinese Remainder Theorem. Let m_{1}, \ldots, m_{k} be pairwise relatively prime natural numbers. The system of simultaneous linear congruences

$$
x \equiv a_{1} \quad \bmod m_{1}, \ldots, x \equiv a_{k} \quad \bmod m_{k}
$$

has a unique solution $\bmod M$, where $M=m_{1} \ldots m_{k}$.
This solution is found as follows. Let $z_{i}=M / m_{i}$ and note that for each i the congruence

$$
z_{i} y_{i} \equiv 1 \quad \bmod m_{i}
$$

has a solution y_{i} (because $\operatorname{gcd}\left(z_{i}, m_{i}\right)=1$). Now a solution to the simultaneous congruences is found by

$$
x=a_{1} y_{1} z_{1}+\cdots+a_{k} y_{k} z_{k}
$$

2. Definition (Group). A group consists of a set G and a binary operation $\circ: G \times G \rightarrow G:(g, h) \mapsto$ $g \circ h$ which satisfies the following properties.
(a) Associativity. For all $g, h, k \in G$ we have

$$
(g \circ h) \circ k=g \circ(h \circ k)
$$

(b) Identity. There is an element $e \in G$ such that

$$
e \circ g=g \circ e=g
$$

for all $g \in G$.
(c) Inverses. For every $g \in G$ there exists $g^{-1} \in G$ such that

$$
g \circ g^{-1}=g^{-1} \circ g=e
$$

Note that the closure property is included in the definition of a binary operation as being a function from $G \times G$ with values in G.
3. Cayley's Theorem. Every group is isomorphic to a subgroup of a group of permutations.
4. Lagrange's Theorem. If G is a finite group and H is a subgroup of G, then $|H|$ divides $|G|$.

