MATH 2513-002 Midterm I topics sheet

1. Know what the sets $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and \mathbb{R} are.
2. Know the definitions of odd and even integers.
3. Can prove statements about even/odd-ness of powers, products, sums of odd/even integers.
4. Can prove that various numbers including $\sqrt{2}, \sqrt{3}, \sqrt{5}, \sqrt{6}, \sqrt{7}, \sqrt[3]{2}, \sqrt[3]{3}$ are all irrational.
5. Know the logical expressions $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$. Know their english equivalents, their truth tables, and be able to compute the truth table of compound expressions.
6. Know about predicates and quantifiers; in particular $(\forall x \in U) P(x)$ and $(\exists x \in U) P(x)$. Know how to interpret statements with nested quantifiers, and how to understand negations of quantified statements.
7. Be aware of different types of proofs: direct proofs (from hypothesis to conclusion), proofs via a logical equivalence (e.g., proof of the contrapositive statement), proofs using cases, and proofs by contradiction.
8. Understand the difference between converse and the contrapositive of a conditional statement.
9. Be able to prove simple properties of the real numbers as consequences of the list of properties in Table 1.2.

- 0 is the only additive identity
- 1 is the only multiplicative identity
- additive inverses are unique
- multiplicative inverses (of non-zero numbers) are unique
- $0 a=0$ for all $a \in \mathbb{R}$
- $a(-b)$ and $(-a) b$ are both additive inverses of $a b$ for all $a, b \in \mathbb{R}$.
- $(-a)(-b)=a b$ for all $a, b \in \mathbb{R}$.
- If $a \neq 0$ and $b \neq 0$ are real numbers, then $a b \neq 0$.

10. Know the definition of $a \mid b$.
11. Know basic properties (and their proofs) of $a \mid b$.

- If $a \mid b$ and $a \mid c$, then $a \mid(x b+y c)$ for all $x, y \in \mathbb{Z}$.
- $m \mid a$ if and only if $a \equiv 0 \bmod m$.

12. Know the definition of $a \equiv b \bmod m$.
13. Know basic properties (and their proofs) of $a \equiv b \bmod m$.

- $a \equiv a \bmod m$.
- $a \equiv b \bmod m$ implies $b \equiv a \bmod m$.
- $a \equiv b \bmod m$ and $b \equiv c \bmod m$ implies $a \equiv c \bmod m$.
- $a \equiv x \bmod m$ and $b \equiv y \bmod m$ implies $a+b \equiv x+y \bmod m$.
- $a \equiv x \bmod m$ and $b \equiv y \bmod m$ implies $a b \equiv x y \bmod m$.

14. Know some early applications of $\equiv \bmod m$, such as tests for divisibility.
