MATH 2513-002 Midterm I topics sheet

- 1. Know what the sets \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} are.
- 2. Know the definitions of *odd* and *even* integers.
- 3. Can prove statements about even/odd-ness of powers, products, sums of odd/even integers.
- 4. Can prove that various numbers including $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$, $\sqrt{6}$, $\sqrt{7}$, $\sqrt[3]{2}$, $\sqrt[3]{3}$ are all irrational.
- 5. Know the logical expressions \neg , \land , \lor , \rightarrow , \leftrightarrow . Know their english equivalents, their truth tables, and be able to compute the truth table of compound expressions.
- 6. Know about predicates and quantifiers; in particular $(\forall x \in U)P(x)$ and $(\exists x \in U)P(x)$. Know how to interpret statements with nested quantifiers, and how to understand negations of quantified statements.
- 7. Be aware of different types of proofs: direct proofs (from hypothesis to conclusion), proofs via a logical equivalence (e.g., proof of the contrapositive statement), proofs using cases, and proofs by contradiction.
- 8. Understand the difference between converse and the contrapositive of a conditional statement.
- 9. Be able to prove simple properties of the real numbers as consequences of the list of properties in Table 1.2.
 - 0 is the only additive identity
 - 1 is the only multiplicative identity
 - additive inverses are unique
 - multiplicative inverses (of non-zero numbers) are unique
 - 0a = 0 for all $a \in \mathbb{R}$
 - a(-b) and (-a)b are both additive inverses of ab for all $a, b \in \mathbb{R}$.
 - (-a)(-b) = ab for all $a, b \in \mathbb{R}$.
 - If $a \neq 0$ and $b \neq 0$ are real numbers, then $ab \neq 0$.
- 10. Know the definition of $a \mid b$.
- 11. Know basic properties (and their proofs) of $a \mid b$.
 - If $a \mid b$ and $a \mid c$, then $a \mid (xb + yc)$ for all $x, y \in \mathbb{Z}$.
 - $m \mid a \text{ if and only if } a \equiv 0 \mod m$.
- 12. Know the definition of $a \equiv b \mod m$.
- 13. Know basic properties (and their proofs) of $a \equiv b \mod m$.
 - $a \equiv a \mod m$.
 - $a \equiv b \mod m$ implies $b \equiv a \mod m$.
 - $a \equiv b \mod m$ and $b \equiv c \mod m$ implies $a \equiv c \mod m$.
 - $a \equiv x \mod m$ and $b \equiv y \mod m$ implies $a + b \equiv x + y \mod m$.
 - $a \equiv x \mod m$ and $b \equiv y \mod m$ implies $ab \equiv xy \mod m$.
- 14. Know some early applications of $\equiv \mod m$, such as tests for divisibility.