I. Say whether this is true or false.

$$
(\forall x \in \mathbb{Z})(\forall y \in \mathbb{Z})(x+y=x)
$$

False. One counterexample suffices to show that this is false; for example, if $x=2$ and $y=5$, then $2+5 \neq 2$.
II. Say whether this is true or false.

$$
(\exists x \in \mathbb{Z})(\forall y \in \mathbb{Z})(x+y=x)
$$

False. We need to argue for every $x \in \mathbb{Z}$ that there is some y such that $x+y \neq x$. Pick $y=2$ for example. Then given any $x \in \mathbb{Z}$ we have $x+2 \neq x$.
III. Say whether this is true or false.

$$
(\forall x \in \mathbb{Z})(\exists y \in \mathbb{Z})(x+y=x)
$$

True. The same choice $y=0$ works for all x. Given any $x \in \mathbb{Z}$ if we choose $y=0$ we have $x+0=x$.
IV. Say whether this is true or false.

$$
(\exists x \in \mathbb{Z})(\exists y \in \mathbb{Z})(x+y=x)
$$

True. For example $x=1$ and $y=0$ gives $1+0=1$.
V. Say whether this is true or false.

$$
(\exists y \in \mathbb{Z})(\forall x \in \mathbb{Z})(x+y=x)
$$

True. This is the definition of y being an additive identity. So, we pick $y=0$. Then, given any $x \in \mathbb{Z}$ we have $x+0=x$.

