MATH 2513-002	Discrete Mathematics	Noel Brady 2 hours
Friday <u>12/12/2014</u>	Final Examination	
Name:	Student ID:	

Instructions.

- 1. Attempt all questions.
- 2. Do not write on back of exam sheets. Extra paper is available if you need it.
- 3. Show all the steps of your work clearly.

Question	Points	Your Score
Q1	15	
Q2	15	
Q3	15	
Q4	15	
Q5	15	
Q6	15	
Q7	15	
Q8	20	
TOTAL	125	

 $\mathbf{Q1}$]... [15 points] State the Fundamental Theorem of Arithmetic.

Prove that if p is prime, then the cube root $\sqrt[3]{p}$ is irrational.

Prove that $\log_2 3$ is irrational.

Q2]... [15 points] Give the definition of $a \equiv b \mod m$.

Find the remainder when 27,182,818 is divided by 11. Show details of your work.

Find the remainder when 2^{66} is divided by 17. Show details of your work.

Today is Friday. What day of the week will it be 1 million (10^6) days from today? Show details of your work.

Q3]... [15 points] What is the definition of the greatest common divisor, (a, b), of non-zero integers a, b?

State a theorem which relates the value of (a, b) to the values of a and b.

Prove that if a, b, c are integers such that $a \mid bc$ and (a, b) = 1, then $a \mid c$.

Prove that if p is prime, a, b are integers and $p \mid ab$, then $p \mid a$ or $p \mid b$.

Q4]...[15 points] Give the definition of an injective function.

Give the definition of a surjective function.

Determine if the following functions are only injective, only surjective, both injective and surjective, or neither. Give arguments to support your answers.

• $f: \mathbb{R} \to \mathbb{R}: x \mapsto e^x$.

• $g: \mathbb{Z}_4 \to \mathbb{Z}_5 - \{0\}: x \mapsto 2^x.$

• $h: \mathbb{R}^2 \to \mathbb{R}: (x, y) \mapsto 2x + y.$

Q5]...[15 points] State the principle of mathematical induction.

Let n be an integer which is at least 2. Suppose there are n OU fans, each wearing a crimson or a cream t-shirt, standing in line facing a concession stand. Suppose that the fan at the front of the line is wearing a crimson t-shirt and the fan at the end of the line is wearing a cream t-shirt. Use induction to prove that somewhere in the line there is an OU fan wearing a crimson t-shirt standing directly in front of an OU fan wearing a cream t-shirt.

• State the base case, and say why it is true.

• State the induction step. What are you assuming, and what do you have to prove?

• Give a proof of the induction step.

• What is your conclusion?

Q6]...[15 points] State the Schroeder-Bernstein Theorem.

Write down an injective map $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N} \times \mathbb{N}$. Verify that your map f is injective.

Write down an injective map $g: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N}$. Verify that your map g is injective.

Prove that the sets $\mathbb{N} \times \mathbb{N}$ and $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ are equivalent.

Q7]...[15 points] Describe the elements of the group G of symmetries of a regular pentagon. How many elements does G have?

Describe an explicit isomorphism between the group G above and a subgroup of $Perm(\{1, 2, 3, 4, 5\})$.

Q8]...[20 points] Determine whether each of the following are True or False. Give brief reasons for each of your answers.

- 1. $\exists x (A(x) \land B(x))$ is logically equivalent to $\exists x A(x) \land \exists x B(x)$.
- 2. $P \longrightarrow Q$ is logically equivalent to $Q \longrightarrow P$.
- 3. $\mathcal{P}(\mathcal{P}(\emptyset))$ has one element, where $\mathcal{P}(A)$ denotes the power set of a set A.
- 4. The order of the permutation (123)(4567) is 6.
- 5. $\neg(P \longrightarrow Q)$ is logically equivalent to $P \land \neg Q$.
- 6. An element of A^B is a subset of $B \times A$.
- 7. $\{\emptyset\} \emptyset = \{\}.$

8. $|A \cup B \cup C| = |A| + |B| + |C| + |A \cap B \cap A \cap C| - |A \cap B| - |A \cap C| - |B \cap C|.$

- 9. If p is a prime, then $p \mid (m^p m)$ for all integers m.
- 10. The set of all functions from \mathbb{R} to \mathbb{R} has the same cardinality as the set $\mathbb{R} \times \mathbb{R}$.