Friday 03/11/2016
Name: \square

Midterm II
50 mins
Student ID: \square

Instructions.

1. Attempt all questions.
2. Do not write on back of exam sheets. Extra paper is available if you need it.
3. Show all the steps of your work clearly.

Question	Points	Your Score
Q1	20	
Q2	20	
Q3	20	
Q4	20	
Q5	20	
TOTAL	100	

Miscellaney.

1. Least Principle. Every non-empty subset of \mathbb{N} contains a least element.
2. Theorem. (Division Algorithm) Let $d \in \mathbb{N}$ and $a \in \mathbb{Z}$. Then there exists unique integers $q, r \in \mathbb{Z}$ such that

$$
a=q d+r
$$

where $0 \leq r<d$.
3. Proposition [Euclidean Algorithm]. Let a and b be integers and b positive. By the Division Algorithm there are unique integers q, r so that

$$
a=b q+r \quad \text { and } 0 \leq r<b
$$

Then

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)
$$

4. Proposition (Bezout's identity). Let a, b be integers, not both zero. Then there exist integers l, m such that

$$
\operatorname{gcd}(a, b)=l a+m b
$$

5. Corollary (Euclid's Lemma). Let p, b, c be integers, and p a prime number. If $p \mid b c$ and $p \nmid b$, then $p \mid c$.
6. Theorem (Fundamental Theorem of Arithmetic). Every integer a greater than or equal to 2 can be expressed as a product of prime numbers. That is

$$
a=p_{1} \ldots p_{n}
$$

where the p_{j} are primes. This includes the special case of $n=1$ and so a is prime. Furthermore, this expression is unique if we require that the primes be listed in non-decreasing order.

$$
p_{1} \leq p_{2} \leq \cdots \leq p_{n}
$$

7. Theorem (Fermat's Little Theorem). Let p be a prime number and let a be a nonzero element of \mathbb{Z}_{p}. Then

$$
a^{p-1} \equiv 1 \quad \bmod p
$$

Q1]. . [20 points] State the Principle of Induction.

Give a proof by induction of the following statement.

$$
1^{2}+2^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \quad \text { for all } n \in \mathbb{N}
$$

Q2]...[20 points] Give a proof of the following statement.
If a natural number n is not a perfect cube (that is n is not one of $1,8,27,64, \ldots$), then its cube root $\sqrt[3]{n}$ is irrational.

Q3]... [20 points] Compute $\operatorname{gcd}(729,354)$ and find integers c and d such that

$$
729 c+354 d=\operatorname{gcd}(729,354)
$$

Recall that the Fibonacci numbers are defined by $F_{1}=1=F_{2}$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 3$. Give a proof of the following statement.

$$
\operatorname{gcd}\left(F_{n}, F_{n-1}\right)=1 \quad \text { for all integers } n \geq 2
$$

Q4]...[20 points] You have access to a water faucet and two drinking glasses, one with capacity exactly 21 oz and the other with capacity exactly 13 oz . Is it possible to measure out exactly 1 oz of water? Either describe a series of steps that ends up with 1oz, or prove that it is impossible.

You have access to a water faucet and two drinking glasses, one with capacity exactly 21 oz and the other with capacity exactly 15 oz . Is it possible to measure out exactly 1 oz of water? Either describe a series of steps that ends up with 1oz, or prove that it is impossible.

Q5]. . [20 points] Use modular exponentiation rules to compute the following powers in modular arithmetic.

1. $(23)^{50} \bmod 17$
2. $(2016)^{2016} \bmod 11$
3. $3^{124} \bmod 77$

Let p, q, r be three distinct prime numbers. Guess a positive integer power m so that

$$
a^{m} \equiv 1 \quad \bmod p q r \quad \text { for every integer } a \text { such that } \operatorname{gcd}(a, p q r)=1
$$

Now prove that your guess is correct.

