
Examples and some basic properties of groups

1. Definition (Group). A group consists of a set G and a binary operation ◦ : G × G → G :
(g, h) 7→ g ◦ h which satisfies the following properties.

(a) Associativity. For all g, h, k ∈ G we have

(g ◦ h) ◦ k = g ◦ (h ◦ k)

(b) Identity. There is an element e ∈ G such that

e ◦ g = g ◦ e = g

for all g ∈ G.

(c) Inverses. For every g ∈ G there exists g−1 ∈ G such that

g ◦ g−1 = g−1 ◦ g = e

Note that the closure property is included in the definition of a binary operation as being a
function from G×G with values in G.

2. Examples of groups. Here are some examples and some non-examples.

• The set Sn = Perm({1, . . . , n}) is a group under composition of functions ◦.
• The set Z is a group under +. So also are Q, R, C under +.

• The set N is not a group under + (no inverses).

• The set R−{0} is a group under ×. So also are R>0, Q−{0}, Q>0, and C−{0} groups
under ×.

• The set Zn is a group under +n.

• The set Zp − {0} is a group under ×p where p is a prime.

• The set Dn of symmetries of a regular n–gon in the euclidean plane is a group under
composition of functions.

• The set of symmetries of a regular polyhedron (e.g., a cube, an octahedron, a tetrahedron,
an octahedron, an icosahedron, a dodecahedron) in euclidean 3-dimensional space is a
group.

• The set of symmetries of a wallpaper pattern in the euclidean plane is a group.

3. Basic properties. The following results are true for all groups.

• The identity element is unique.

• Inverses are unique.

4. Isomorphic groups. Two groups (G1, ◦1) and (G2, ◦2) are said to be isomorphic if there is
a bijection ϕ : G1 → G2 which respects multiplication. That is

ϕ(g ◦1 h) = ϕ(g) ◦2 ϕ(h)

for all g, h ∈ G1.

Intuitively, isomorphic groups are the same. They have the same number of elements and the
elements (once paired up) multiply in the same way, You could think of it as translating a
group from English into French. There is the same underlying group structure but different
expressions for the elements and the operation.

Examples of isomorphic groups include.



• D3 and S3.

• S4 and the group of symmetries of a regular tetrahedron in 3–space.

• S2 and Z2.

• A3 and Z3.

• (R,+) and (R>0,×).

• (Zp − {0},×p) and (Zp−1,+p−1) where p ≥ 3 is a prime. You can learn proofs of this
fact in an abstract algebra course. Meanwhile, find explicit isomorphisms in the cases
p = 3, 5 , 7, and 11.

• ({±1,±i},×) and (Z4,+4).

5. Subgroups. A subset H ⊆ G of a group G is said to be a subgroup if it is a group under
the operation on G. That is H contains the identity of G, and is closed under taking inverses
and products.

Examples of subgroups include the following.

• mZ is a subgroup of Z.

• An the alternating group is a subgroup of Sn the symmetric group.

• {I, (12)} is a subgroup of S3.

• (Z,+) is a subgroup of (Q,+) which is a subgroup of (R,+) etc.

• If g ∈ G then the set
〈g〉 = {gn | n ∈ Z}

is a subgroup of G. It is called the cyclic subgroup of G generated by g.

An element g ∈ G has finite order if gm = e for some m ∈ N. The smallest such m is
called the order of g and is denoted by ord(g). If ord(g) = m, then 〈g〉 has size m. Its
elements are g1, g2, . . . , gm−1, gm = e.

For example

〈(123)(45)〉 = {(123)(45), (132), (45), (123), (132)(45), I}

is a subgroup of size 6 in S5.

• The symmetries of a cube which send a given face to itself forms a subgroup of the group
of symmetries of a cube. Similarly for the symmetries which send an edge to itself, or
for the symmetries which fix a vertex.

6. Cayley’s Theorem. Every group is isomorphic to a group of permutations of a set. In
particular, the group G is isomorphic to a subgroup of Perm(G).

Proof. Let g ∈ G. Consider the function Lg : G → G : x 7→ Lg(x) = gx defined by left
multiplication by g. Here are two cool properties of left multiplication.

• If e ∈ G is the identity element, then Le = IG.

Proof. By definition Le(x) = ex = x = IG(x) for all x ∈ G. Thus Le = IG.

• If g1, g2 ∈ G, then Lg1 ◦ Lg2 = Lg1g2 .

Proof. Indeed for any x ∈ G we have

Lg1 ◦ Lg2(x) = Lg1(Lg2(x)) = Lg1(g2x) = g1(g2x) = (g1g2)x = Lg1g2(x)

Thus Lg1 ◦ Lg2 = Lg1g2 .



From these properties we conclude that

Lg ◦ Lg−1 = Lgg−1 = Le = IG

and
L−1
g ◦ Lg = Lg−1g = Le = IG

The top equality implies that Lg is surjective, and the bottom equality implies that Lg is
injective. Therefore Lg is a bijection (permutation of G) with inverse

L−1
g = Lg−1

Now, the facts that IG = Le, that Lg ◦ Lh = Lgh and that L−1
g = Lg−1 imply that the subset

{Lg | g ∈ G} ⊆ Perm(G)

is a subgroup.

Finally we verify that the assignment

G → {Lg | g ∈ G} ⊆ Perm(G)

sending g to Lg is an isomorphism of groups. It is clearly surjective (by definition of the
set {Lg | g ∈ G}) and injectivity is readily established. If Lg = Lh, then Lg(e) = Lh(e),
and this implies ge = he or g = h. Done! Finally, the equation Lg ◦ Lh = Lgh implies that
the assignment respects group multiplications (multiplication gh on G on the one hand and
composition of permutations Lg ◦ Lh on the other) and so is an isomorphism.

Examples. Here are some examples of groups considered as subgroups of permutation
groups according to the proof of Cayley’s theorem.

• (Z3,+3) is isomorphic to the group {I, (012), (021)} of Perm(Z3).

• (Zn,+n) is isomorphic to the group {I, (012 . . . n−1), (012 . . . n−1)2, . . . , (12 . . . n−1)n−1}
of Perm(Zn).

• Given m ∈ Z let Pm denote the bijection of Z given by adding m (plus m)

Pm : Z→ Z : n 7→ Pm(n) = m + n

Cayley’s theorem implies that the assignment

(Z,+) → (Perm(Z), ◦)

sending m to Pm is an isomorphism of groups.

More efficient examples. We can often realize particular groups as being isomorphic to
subgroups of permutation groups in more efficient ways than the method of Cayley’s theorem.

• The dihedral group D3 is isomorphic to a subgroup of S3 where the 3 element set is the
set of vertices of the triangle.

• Write out explicit isomorphisms for D4, D5, D6 similar to the one above.

• The group of symmetries of a regular tetrahedron is isomorphic to S4.



• The group of symmetries of a regular cube is isomorphic to a subgroup of S8 (using
vertices), and to a subgroup of S12 (using edges), and to a subgroup of S6 (using faces).

7. Lagrange’s Theorem. If G is a finite group and H is a subgroup of G, then |H| | |G|.
Proof. We have already seen that left multiplication Lg by g ∈ G is a bijective function. In
particular

Lg|H : H → Lg(H)

is a bijection. This shows that each set Lg(H) has the same number of elements as H.

Some of these image sets are the same. For example, if h ∈ H then Lh(H) = H. Likewise if
h ∈ H and g ∈ G−H then Lg(H) = Lg(Lh(H)) = Lgh(H).

It is a wonderful fact that two such image sets are either the same or are disjoint. In other
words, if Lg1(H)∩Lg2(H) 6= ∅, then Lg1(H) = Lg2(H). Indeed, if x ∈ Lg1(H)∩Lg2(H) then
this means that x = g1h1 for some h1 ∈ H and that x = g2h2 for some h2 ∈ H. But this
means that

g1h1 = g2h2

Multiplying across on the left by g−1
2 and on the right by h−1

1 gives

g−1
2 g1 = h2h

−1
1

Thus
L−1
g2 ◦ Lg1(H) = Lg−1

2 g1
(H) = Lh2h

−1
1

(H) = H

This means
L−1
g2 (Lg1(H)) = H

and so
Lg2(L−1

g2 (Lg1(H))) = Lg2(H)

In other words
Lg1(H) = Lg2(H)

Thus we have a partition of G into disjoint subsets of the form Lg(H) each of which is bijective
to H and so has the same cardinality as H. Since G is finite there are only finitely many (say
that there are m) of these distinct subsets Lg(H). But this means m|H| = |G| and so |H|
divides |G|.
Examples. There are lots of examples of Lagrange’s Theorem.

• If G is a finite group and g ∈ G, then ord(g) | |G|.
• 〈(12)〉, (123)〈(12)〉 and (132)〈(12)〉 form a partition of S3.

• 〈(123)〉 and (12)〈(123)〉 form a partition of S3.

• An and (12)An form a partition of Sn.

• The set of symmetries of the cube which send a given face of the cube into itself forms
a subgroup of the group of symmetries of the cube which is isomorphic to D4. Thus the
number of symmetries of the cube is a multiple of 8.

• We know that for p prime (Zp − {0},×) is a group under multiplication. Its order is
p−1. If a ∈ Zp−{0} then the order of a (that is the power of a which yields the identity
1 mod p) divides p− 1 by Lagrange’s theorem. This means

ap−1 ≡ 1 mod p

This is the statement of Fermat’s Little Theorem.


