Examples and some basic properties of groups

1. Definition (Group). A group consists of a set G and a binary operation o : G x G — G :
(g, h) — g o h which satisfies the following properties.

(a)

(b)

()

Associativity. For all g, h, k € G we have
(goh)ok = go(hok)
Identity. There is an element e € G such that
eog = goe = ¢g
for all g € G.

Inverses. For every g € G there exists g~! € G such that

gog_1 = g_log = e

Note that the closure property is included in the definition of a binary operation as being a
function from G x G with values in G.

2. Examples of groups. Here are some examples and some non-examples.

The set S, = Perm({1,...,n}) is a group under composition of functions o.
The set Z is a group under +. So also are Q, R, C under +.
The set N is not a group under + (no inverses).

The set R — {0} is a group under x. So also are R~g, Q — {0}, Qx0, and C — {0} groups
under X.

The set Z,, is a group under 4.

The set Z, — {0} is a group under X, where p is a prime.

The set D,, of symmetries of a regular n—gon in the euclidean plane is a group under
composition of functions.

The set of symmetries of a regular polyhedron (e.g., a cube, an octahedron, a tetrahedron,
an octahedron, an icosahedron, a dodecahedron) in euclidean 3-dimensional space is a
group.

The set of symmetries of a wallpaper pattern in the euclidean plane is a group.

3. Basic properties. The following results are true for all groups.

The identity element is unique.

Inverses are unique.

4. Isomorphic groups. Two groups (G1,01) and (Ge,02) are said to be isomorphic if there is
a bijection ¢ : G1 — G2 which respects multiplication. That is

p(go1h) = ¢(g) o2 p(h)

for all g, h € G1.

Intuitively, isomorphic groups are the same. They have the same number of elements and the
elements (once paired up) multiply in the same way, You could think of it as translating a
group from English into French. There is the same underlying group structure but different
expressions for the elements and the operation.

Examples of isomorphic groups include.



D3 and Sj3.

S4 and the group of symmetries of a regular tetrahedron in 3—space.

Sy and Zo.

As and Zs.

(R, +) and (Rsq, x).

(Zp, — {0}, xp) and (Zp—1,+p—1) where p > 3 is a prime. You can learn proofs of this

fact in an abstract algebra course. Meanwhile, find explicit isomorphisms in the cases
p=3,5,7 and 11.

o ({£1,+£i}, x) and (Zy4, +4).

5. Subgroups. A subset H C G of a group G is said to be a subgroup if it is a group under
the operation on GG. That is H contains the identity of G, and is closed under taking inverses
and products.

Examples of subgroups include the following.

e mZ is a subgroup of Z.

A, the alternating group is a subgroup of S,, the symmetric group.
{I, (12)} is a subgroup of Ss.

(Z,+) is a subgroup of (Q,+) which is a subgroup of (R, +) etc.

If g € G then the set

(9) = {g" InelZ}
is a subgroup of G. It is called the cyclic subgroup of G generated by g.

An element g € G has finite order if g™ = e for some m € N. The smallest such m is
called the order of g and is denoted by ord(g). If ord(g) = m, then (g) has size m. Its
elements are ¢g',¢%,..., g™ 1, g™ =e.

For example
((123)(45)) = {(123)(45), (132), (45), (123), (132)(45),1}

is a subgroup of size 6 in Ss.

e The symmetries of a cube which send a given face to itself forms a subgroup of the group
of symmetries of a cube. Similarly for the symmetries which send an edge to itself, or
for the symmetries which fix a vertex.

6. Cayley’s Theorem. Every group is isomorphic to a group of permutations of a set. In
particular, the group G is isomorphic to a subgroup of Perm(G).
Proof. Let g € G. Consider the function Ly : G — G : © — Lg(x) = gx defined by left
multiplication by g. Here are two cool properties of left multiplication.
e If e € (G is the identity element, then L, = 4.
Proof. By definition L.(z) = ex = z = Ig(x) for all z € G. Thus L, = I5. O
e If g1,90 € G, then Ly, oLy, = Ly, g,.
Proof. Indeed for any x € G we have

Lgl ong(m) = Lgl(LQQ('I)) = L91(92x) = 91(92$) = (9192)$ = LngQ(l')
Thus Ly, o Ly, = Ly, g,- O



From these properties we conclude that

LyoLy1 = Lyg1 = Le = Ig

and

LjtoLy =L = L. = Ig
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The top equality implies that L, is surjective, and the bottom equality implies that L, is
injective. Therefore Ly is a bijection (permutation of G) with inverse

-1
Lyt = Ly

Now, the facts that Ig = L., that L, o Lj, = L, and that L;l = Ly imply that the subset
{Ly| g€ G} C Perm(G)

is a subgroup.

Finally we verify that the assignment
G — {Ly| g€ G} C Perm(G)

sending g to L4 is an isomorphism of groups. It is clearly surjective (by definition of the
set {Ly | g € G}) and injectivity is readily established. If L, = Ly, then Lg(e) = Ly(e),
and this implies ge = he or g = h. Done! Finally, the equation Ly o L;, = Lgj, implies that
the assignment respects group multiplications (multiplication gh on G on the one hand and
composition of permutations Ly o Ly, on the other) and so is an isomorphism. O

Examples. Here are some examples of groups considered as subgroups of permutation
groups according to the proof of Cayley’s theorem.

o (Zs,4+s3) is isomorphic to the group {I, (012), (021)} of Perm(Zs).

e (Zy,+n) is isomorphic to the group {I, (012...n—1),(012...n—1)2,...,(12...n—1)""1}
of Perm(Z,,).

e Given m € Z let P, denote the bijection of Z given by adding m (plus m)
Pn:Z—7Z:nw— Py(n)=m+n
Cayley’s theorem implies that the assignment
(Z,+) — (Perm(Z),0)
sending m to P, is an isomorphism of groups.

More efficient examples. We can often realize particular groups as being isomorphic to
subgroups of permutation groups in more efficient ways than the method of Cayley’s theorem.

e The dihedral group Dj is isomorphic to a subgroup of S3 where the 3 element set is the
set of vertices of the triangle.
e Write out explicit isomorphisms for Dy, D5, Dg similar to the one above.

e The group of symmetries of a regular tetrahedron is isomorphic to Sy.



e The group of symmetries of a regular cube is isomorphic to a subgroup of Sg (using
vertices), and to a subgroup of Si2 (using edges), and to a subgroup of Sg (using faces).

7. Lagrange’s Theorem. If G is a finite group and H is a subgroup of G, then |H| | |G].

Proof. We have already seen that left multiplication L, by g € G is a bijective function. In
particular

Lylg: H — Lg(H)
is a bijection. This shows that each set L,(H) has the same number of elements as H.

Some of these image sets are the same. For example, if h € H then L,(H) = H. Likewise if
he€ H and g € G — H then Ly(H) = Ly(Lp(H)) = Lgn(H).
It is a wonderful fact that two such image sets are either the same or are disjoint. In other
words, if Ly, (H) N Lg,(H) # 0, then Ly, (H) = Lg,(H). Indeed, if € Ly, (H) N Ly, (H) then
this means that x = g1hy for some hy € H and that = goho for some ho € H. But this
means that

gith1 = gahs
Multiplying across on the left by g5 1 and on the right by hl_l gives

g5 g1 = hahi!

Thus

L toLy(H) = L1, (H) = Ly (H) = H
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This means
L' (Lg (H)) = H
and so
Ly, (L, (Lg, (H))) = Ly, (H)
In other words

Lg, (H> = ng(H)

Thus we have a partition of G into disjoint subsets of the form Ly (H) each of which is bijective
to H and so has the same cardinality as H. Since G is finite there are only finitely many (say
that there are m) of these distinct subsets Ly(H). But this means m|H| = |G| and so |H]|
divides |G]. O

Examples. There are lots of examples of Lagrange’s Theorem.

e If G is a finite group and g € G, then ord(g) | |G].

((12)), (123)((12)) and (132)((12)) form a partition of Ss.

((123)) and (12)((123)) form a partition of Ss.

e A, and (12)A,, form a partition of S,.

e The set of symmetries of the cube which send a given face of the cube into itself forms

a subgroup of the group of symmetries of the cube which is isomorphic to D4. Thus the
number of symmetries of the cube is a multiple of 8.

e We know that for p prime (Z, — {0}, x) is a group under multiplication. Its order is
p—1. If a € Z,, — {0} then the order of a (that is the power of a which yields the identity
1 mod p) divides p — 1 by Lagrange’s theorem. This means

a1 =1 modp

This is the statement of Fermat’s Little Theorem.



