Theorem. If an integer a is odd, then a^3 is odd.

Two column format.

Statement	Reason
a is odd	hypothesis
$a = 2p + 1$ for some $p \in \mathbb{Z}$	definition of odd
$a^3 = (2p+1)^3 = 8p^3 + 12p^2 + 6p + 1$	algebra
$a^3 = 2(4p^3 + 6p^2 + 3p) + 1$	algebra
But $4p^3 + 6p^2 + 3p \in \mathbb{Z}$	closure of \mathbb{Z} under + and ×
Thus a^3 is odd	definition of odd

Paragraph format

By hypothesis a is odd. This means a = 2p + 1 for some $p \in \mathbb{Z}$. Therefore

$$a^{3} = (2p+1)^{3} = 8p^{3} + 12p^{2} + 6p + 1 = 2(4p^{3} + 6p^{2} + 3p) + 1.$$

Thus $a^3 = 2q + 1$ where $q = (4p^3 + 6p^2 + 3p) \in \mathbb{Z}$ by closure of \mathbb{Z} under addition and multiplication, and so a^3 is odd.

Theorem. If an integer a is even, then a^3 is even.

Two column format.

Statement	Reason
a is even	hypothesis
$a = 2p$ for some $p \in \mathbb{Z}$	definition of even
$a^3 = (2p)^3 = 8p^3$	algebra
$a^3 = 2(4p^3)$	algebra
But $4p^3 \in \mathbb{Z}$	closure of \mathbbm{Z} under \times
Thus a^3 is even	definition of even

Paragraph format

By hypothesis a is even. This means a = 2p for some $p \in \mathbb{Z}$. Therefore

$$a^3 = (2p)^3 = 8p^3 = 2(4p^3).$$

Thus $a^3 = 2q$ where $q = (4p^3) \in \mathbb{Z}$ by closure of \mathbb{Z} under multiplication, and so a^3 is even.

Theorem. If a is an even integer and b is an even integer, then

- (i) ab is an even integer, and
- (ii) a + b is an even integer.

Proof. By hypothesis a = 2p for some $p \in \mathbb{Z}$ and b = 2q for some $q \in \mathbb{Z}$. Thus

$$ab = (2p)(2q) = 2(2pq)$$

is even since $2pq \in \mathbb{Z}$ by closure properties. Thus conclusion (i) holds. Also

$$a + b = (2p) + (2q) = 2(p + q)$$

is even since $p + q \in \mathbb{Z}$ by closure properties. Thus conclusion (ii) holds.

Theorem. If a is an even integer and b is an odd integer, then

- (i) *ab* is an even integer, and
- (ii) a + b is an odd integer.

Proof. By hypothesis a = 2p for some $p \in \mathbb{Z}$ and b = 2q + 1 for some $q \in \mathbb{Z}$. Thus

$$ab = (2p)(2q+1) = 2(p(2q+1))$$

is even since $p(2q+1) \in \mathbb{Z}$ by closure properties. Thus conclusion (i) holds. Also

$$a + b = (2p) + (2q + 1) = 2(p + q) + 1$$

is odd since $p + q \in \mathbb{Z}$ by closure properties. Thus conclusion (ii) holds.

Theorem. If a is an odd integer and b is an odd integer, then

- (i) *ab* is an odd integer, and
- (ii) a + b is an even integer.

Proof. By hypothesis a = 2p + 1 for some $p \in \mathbb{Z}$ and b = 2q + 1 for some $q \in \mathbb{Z}$. Thus

$$ab = (2p+1)(2q+1) = 4pq + 2p + 2q + 1 = 2(2pq + p + q) + 1$$

is odd since $2pq+p+q\in\mathbb{Z}$ by closure properties. Thus conclusion (i) holds. Also

$$a+b = (2p+1) + (2q+1) = 2(p+q+1)$$

is even since $p + q + 1 \in \mathbb{Z}$ by closure properties. Thus conclusion (ii) holds.