Theorem. If an integer a is odd, then a^{3} is odd.
Two column format.

Statement	Reason
a is odd	hypothesis
$a=2 p+1$ for some $p \in \mathbb{Z}$	definition of odd
$a^{3}=(2 p+1)^{3}=8 p^{3}+12 p^{2}+6 p+1$	algebra
$a^{3}=2\left(4 p^{3}+6 p^{2}+3 p\right)+1$	algebra
But $4 p^{3}+6 p^{2}+3 p \in \mathbb{Z}$	closure of \mathbb{Z} under + and \times
Thus a^{3} is odd	definition of odd

Paragraph format
By hypothesis a is odd. This means $a=2 p+1$ for some $p \in \mathbb{Z}$. Therefore

$$
a^{3}=(2 p+1)^{3}=8 p^{3}+12 p^{2}+6 p+1=2\left(4 p^{3}+6 p^{2}+3 p\right)+1
$$

Thus $a^{3}=2 q+1$ where $q=\left(4 p^{3}+6 p^{2}+3 p\right) \in \mathbb{Z}$ by closure of \mathbb{Z} under addition and multiplication, and so a^{3} is odd.

Theorem. If an integer a is even, then a^{3} is even.
Two column format.

Statement	Reason
a is even	hypothesis
$a=2 p$ for some $p \in \mathbb{Z}$	definition of even
$a^{3}=(2 p)^{3}=8 p^{3}$	algebra
$a^{3}=2\left(4 p^{3}\right)$	algebra
But $4 p^{3} \in \mathbb{Z}$	closure of \mathbb{Z} under \times
Thus a^{3} is even	definition of even

Paragraph format
By hypothesis a is even. This means $a=2 p$ for some $p \in \mathbb{Z}$. Therefore

$$
a^{3}=(2 p)^{3}=8 p^{3}=2\left(4 p^{3}\right)
$$

Thus $a^{3}=2 q$ where $q=\left(4 p^{3}\right) \in \mathbb{Z}$ by closure of \mathbb{Z} under multiplication, and so a^{3} is even.

Theorem. If a is an even integer and b is an even integer, then
(i) $a b$ is an even integer, and
(ii) $a+b$ is an even integer.

Proof. By hypothesis $a=2 p$ for some $p \in \mathbb{Z}$ and $b=2 q$ for some $q \in \mathbb{Z}$. Thus

$$
a b=(2 p)(2 q)=2(2 p q)
$$

is even since $2 p q \in \mathbb{Z}$ by closure properties. Thus conclusion (i) holds.
Also

$$
a+b=(2 p)+(2 q)=2(p+q)
$$

is even since $p+q \in \mathbb{Z}$ by closure properties. Thus conclusion (ii) holds.

Theorem. If a is an even integer and b is an odd integer, then
(i) $a b$ is an even integer, and
(ii) $a+b$ is an odd integer.

Proof. By hypothesis $a=2 p$ for some $p \in \mathbb{Z}$ and $b=2 q+1$ for some $q \in \mathbb{Z}$. Thus

$$
a b=(2 p)(2 q+1)=2(p(2 q+1))
$$

is even since $p(2 q+1) \in \mathbb{Z}$ by closure properties. Thus conclusion (i) holds.
Also

$$
a+b=(2 p)+(2 q+1)=2(p+q)+1
$$

is odd since $p+q \in \mathbb{Z}$ by closure properties. Thus conclusion (ii) holds.

Theorem. If a is an odd integer and b is an odd integer, then
(i) $a b$ is an odd integer, and
(ii) $a+b$ is an even integer.

Proof. By hypothesis $a=2 p+1$ for some $p \in \mathbb{Z}$ and $b=2 q+1$ for some $q \in \mathbb{Z}$. Thus

$$
a b=(2 p+1)(2 q+1)=4 p q+2 p+2 q+1=2(2 p q+p+q)+1
$$

is odd since $2 p q+p+q \in \mathbb{Z}$ by closure properties. Thus conclusion (i) holds.
Also

$$
a+b=(2 p+1)+(2 q+1)=2(p+q+1)
$$

is even since $p+q+1 \in \mathbb{Z}$ by closure properties. Thus conclusion (ii) holds.

