Injective, Surjective, Bijective Functions.

1. Definition (Injective). A function $f: A \rightarrow B$ is said to be injective if

$$
\left(\forall a_{1} \in A\right)\left(\forall a_{2} \in A\right)\left(f\left(a_{1}\right)=f\left(a_{2}\right) \longrightarrow a_{1}=a_{2}\right)
$$

2. Definition (Surjective). A function $f: A \rightarrow B$ is said to be surjective if

$$
(\forall b \in B)(\exists a \in A)(f(a)=b)
$$

3. Definition (Bijective). A function $f: A \rightarrow B$ is said to be bijective if f is both injective and surjective.
4. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are both injective, then $g \circ f: A \rightarrow C$ is injective.
5. If $g \circ f: A \rightarrow C$ is injective, then $f: A \rightarrow B$ is injective, but $g: B \rightarrow C$ need not be.
6. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are both surjective, then $g \circ f: A \rightarrow C$ is surjective.
7. If $g \circ f: A \rightarrow C$ is surjective, then $g: B \rightarrow C$ is surjective, but $f: A \rightarrow B$ need not be.
8. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are both bijective, then $g \circ f: A \rightarrow C$ is bijective.
9. If $g \circ f: A \rightarrow C$ is bijective, then $f: a \rightarrow B$ is injective, and $g: B \rightarrow C$ is surjective, but f need not be surjective and g need not be injective.
10. If $f: A \rightarrow B$ is injective, then $f\left(U_{1} \cap U_{2}\right)=f\left(U_{1}\right) \cap f\left(U_{2}\right)$ for all $U_{1}, U_{2} \subseteq A$.
11. If $f: A \rightarrow B$ is injective, then $f^{-1}(f(U))=U$ for all $U \subseteq A$.
12. If $f: A \rightarrow B$ is surjective, then $f\left(f^{-1}(V)\right)=V$ for all $V \subseteq B$.
13. The identity function

$$
\mathbb{I}_{A}: A \rightarrow A: a \mapsto a
$$

for all $a \in A$ is a bijection of A to itself.
14. If $f: A \rightarrow B$ is a bijection, then there is a well-defined inverse function

$$
f^{-1}: B \rightarrow A
$$

defined by $f^{-1}(b)=a$ where a is the unique element of A such that $f(a)=b$. Existence of a is guaranteed by surjectivity of f and uniqueness is guaranteed by injectivity of f. It "undoes" the function f in the following sense

$$
f \circ f^{-1}=\mathbb{I}_{A} \quad \text { and } \quad f^{-1} \circ f=\mathbb{I}_{A}
$$

