The idea behind public key cryptography (RSA)

The following is a description of the "idea" behind RSA security.

Goal: You want to provide a method for anyone in the world to send you an encoded message. Only you have the ability to decode the message.

You:

1. Choose two (huge) primes $p \neq q$.
2. Form the composite number $n=p q$.
3. Form the number $(p-1)(q-1)$ and choose an integer e such that $\operatorname{gcd}(e,(p-1)(q-1))=1$.
4. Run the Euclidean Algorithm with back substitution to obtain an integer d such that

$$
d e \equiv 1 \bmod (p-1)(q-1)
$$

5. You publish the numbers e and n for all to see, and you keep the numbers d, p, q private.

Second Person:

1. Wants to send you an encoded message.
2. Uses some industry standard method of encoding the extended alphabet (keyboard characters) as numbers, so the message becomes a string of numbers

$$
m_{1}, m_{2}, \ldots
$$

where each number is relatively prime to n (guaranteed by the fact that your original primes p and q are much bigger than the industry standard numbers for encoding keyboard characters).
3. Encodes each m_{i} by converting it to the integer

$$
x_{i} \equiv m_{i}^{e} \quad \bmod n
$$

4. Sends you the string of numbers

$$
x_{1}, x_{2}, \ldots
$$

You:

1. Receive the string of numbers

$$
x_{1}, x_{2}, \ldots
$$

2. Decode each integer by computing

$$
x_{i}^{d} \equiv\left(m_{i}^{e}\right)^{d} \equiv m_{i}^{e d} \equiv m_{i} \quad \bmod n
$$

since $e d \equiv 1 \bmod (p-1)(q-1)$ and $n=p q$.
3. Use your newly obtained sequence of m_{i} and the industry standard translation to recover the original message.

Third person (with evil intent):

1. Intercepts the communication string

$$
x_{1}, x_{2}, \ldots
$$

2. Looks up your public information n and e.
3. Is stuck, since they don't know the decoder number d.
4. If the third person knew the exact factorization $p q$ of n, then they could find d by using the Euclidean Algorithm with e and $(p-1)(q-1)$. It turns out that the problem of finding the decoder d is equivalent to the problem of finding the factorization $p q$ of n.
5. This last problem (finding prime factorizations of extremely large composite numbers) is notoriously difficult. Note that although the third person knows that n is a composite number and in fact is a product of two huge prime numbers (because this is how RSA is designed) they still can't determine the p and q efficiently (fastest computers working with latest factorization methods may take decades).
