
First Results in Elementary Number Theory

1. Definition. Let a and b be two integers, not both zero. We say that d is a common divisor
of a and b if

d | a and d | b.

Note that the common divisors of a and b are no larger than the maximum of |a| and |b|. So
it is natural to consider the following.

2. Definition. The greatest common divisor of a and b is the greatest (largest) of the common
divisors of a and b. It is denoted by gcd(a, b).

3. Proposition. If d | a and d | b, then d | (xa + yb) for all x, y ∈ Z.

We proved this earlier in class. We say that if d divides both a and b, then d divides any
integer linear combination of a and b.

This leads to a lovely recursive algorithm for finding greatest common divisors.

4. Proposition [Euclidean Algorithm]. Let a and b be integers and b positive. By the
Division Algorithm there are unique integers q, r so that

a = bq + r and 0 ≤ r < b.

Then
gcd(a, b) = gcd(b, r).

5. Implementing the Euclidean Algorithm. One starts with integers a and b with b > 0.

• Find integers q1, r1 such that

a = bq1 + r1 and 0 ≤ r1 < b

Proposition 1 above ensures that

gcd(a, b) = gcd(b, r1).

• Find integers q2, r2 such that

b = r1q2 + r2 and 0 ≤ r2 < r1

Proposition I above ensures that

gcd(b, r1) = gcd(r1, r2).

• Stop when you obtain a remainder of 0. Suppose you have integers rk, rk+1 and the DA
gives

rk = rk+1qk+2 + 0

Then gcd(rk, rk+1) = rk+1, and the previous steps combine to give

rk+1 = gcd(rk, rk+1) = · · · = gcd(b, r1) = gcd(a, b).



6. Proposition (Bezout’s identity). Let a, b be integers, not both zero. Then there exist
integers l,m such that

gcd(a, b) = la + mb.

This can be proven either by performing a sequence of backward substitutions in the Euclidean
Algorithm or by the lovely application of the Least Principle that we saw in class.

This has the following consequences.

7. Proposition. Let a, b, c be integers. If gcd(a, b) = 1 and a | bc, then a | c.
Proof. The hypothesis that gcd(a, b) = 4 and Bézout’s identity imply that there exists integers
r, s so that

ra + sb = 1.

Multiplying across by c gives
rac + sbc = c.

Now a | a (since a = a(1)) and that a | bc by hypothesis. Hence the proposition in item 3
above implies that a divides the following integer linear combination of a and bc

rc(a) + s(bc)

This means that a | c.

8. Corollary (Euclid’s Lemma). Let p, b, c be integers, and p a prime number. If p | bc and
p - b, then p | c.
Proof. This follows from the previous proposition and the following observation. Since p is
prime, if p - b, then gcd(p, b) = 1. This is because the only positive factors of p are p and 1,
and since p is not a factor of b, then the only positive factor they have in common is 1. Hence
gcd(p, b) = 1.

This result can also be phrased as follows. If a, b are integers, p is prime and p | ab, then
p | a or p | b.

9. Definition. Two integers a and b are said to be relatively prime if gcd(a, b) = 1.

The proposition in item 7 above is often stated as follows “if a | bc and a is relatively prime
to b, then a | c.” Note that if p is a prime number and b is an integer and p - b, then p and b
are relatively prime. This is why Euclid’s Lemma follows from the proposition in item 7.

10. Lemma. If p, q1, . . . , qn are all primes and

p | q1 . . . qn

then p = qj for some 1 ≤ j ≤ n.

Proof. We argue by induction on n.

The base case n = 1 is seen to be true as follows. If p and q1 are both primes, then p | q1
implies p = q1. This is because the only factors of q1 are q1 and 1 (because q1 is prime), and
p 6= 1 (because p is prime).

Assume it is true for case k. That is given primes p, q1, . . . , qk if p | q1 . . . qk, then p = qj
for some 1 ≤ j ≤ k. Now given primes p, q1, . . . , qk+1 with the property that p | q1 . . . qk+1.
Denoting q1 . . . qk by b and qk+1 by c, our condition becomes p | bc. Euclid’s Lemma implies



that p | b or p | c. In the case p | b, then p | q1 . . . qk and so p = qj for some 1 ≤ j ≤ k by
the induction hypothesis. In the case p | c, then p | qk+1 and so p = qk+1 by the base case
argument. In either case we have shown p = qj for some 1 ≤ j ≤ (k + 1).

By the principle of induction the theorem holds for all positive integers n.

11. Theorem (Fundamental Theorem of Arithmetic). Every integer a greater than or
equal to 2 can be expressed as a product of prime numbers. That is

a = p1 . . . pn

where the pj are primes. This includes the special case of n = 1 and so a is prime.

Furthermore, this expression is unique if we require that the primes be listed in non-decreasing
order.

p1 ≤ p2 ≤ · · · ≤ pn.

Proof. We have seen the proof of existence already (as an example of Strong Induction).
So we only need to argue uniqueness. Let us establish the following form of the uniqueness
statement by Strong Induction.

If the integer n ≥ 2 is a product of prime numbers

p1 . . . pr = n = q1 . . . qs

where the primes pi and qj are arranged in non-decreasing order, then

r = s and pi = qi for all 1 ≤ i ≤ r.

Base case. The statement is clearly true for the base case n = 2. This is because 2 is prime
and so has a unique expression as a product of primes; that is, r = s = 1 and p1 = q1 = 2.

Induction step. Suppose that the uniqueness result above is true for all integers between
2 and k. Consider the integer (k + 1). Either (k + 1) is prime, in which case the uniqueness
statement holds exactly as in the base case (that is, r = s = 1 and p1 = q1 = (k + 1)), or
(k + 1) is composite and we can write

p1 . . . pr = (k + 1) = q1 . . . qs

where r ≥ 2. Then p1 | q1 . . . qs and the Lemma implies that p1 = qj for some 1 ≤ j ≤ s.
Delete p1 from both sides gives

p2 . . . pr =
(k + 1)

p1
= q1 . . . qj−1qj+1 . . . qs

But (k+1)
p1

is an integer in the range 2, . . . , k and so the induction hypotheses implies r− 1 =
s − 1 and that pi = qi after rearranging the qi in nondecreasing order. Therefore r = s and
pi = qi after appropriate relabeling of the q’s.

Thus the uniqueness statement holds by the principle of strong induction.

12. Applications of the Fundamental Theorem.



(a) Relationship between product, gcd and lcm. Given integers a, b

ab = gcd(a, b)lcm(a, b)

where lcm(a, b) is the least common multiple of a and b.

(b) Fractions in least terms and irrationality of square roots in case one of numerator or
denominator is not a perfect square.

(c) Irrationality of logp(q).

(d) gcd(a, bi) = 1 for 1 ≤ i ≤ k iff gcd(a,
∏k

i=1 bi) = 1.

(e) ai | n for 1 ≤ i ≤ k and gcd(ai, aj) = 1 for all i 6= j, then (a1 . . . ak) | n.

13. Theorem (Euclid). There are infinitely many prime numbers.

Proof. We argue by contradiction. Suppose that there are only finitely many prime numbers.
List them

p1, . . . , pn

Now consider the number N = p1 . . . pn + 1. Note that none of the primes pi is a factor of N ,
since N is constructed so that there is a remainder of 1 on division by each pi.

Therefore, the prime factors of N are all distinct from the pi. This contradicts the fact that
p1, . . . , pn was a complete list of all primes.

14. Exercise. Prove that there are infinitely many prime numbers which are congruent to 3
mod 4.

Hint. In Euclid’s proof we considered a product plus 1. Think about 1 plus 2 times a product.

15. Size of primes. The nth prime number pn satisfies pn ≤ 22
n−1

for all n ∈ N.

Proof. We argue by strong induction. The first prime is 2 and

2 ≤ 21 = 22
1−1

Therefore the base case is proven.

The induction hypothesis is that the jth prime satisfies

pj ≤ 22
j−1

for 1 ≤ j ≤ k.

Looking closely at Euclid’s proof that there are infinitely many primes, we see that

pk+1 ≤ p1 . . . pk + 1 ≤ (2)(22
1
)(22

2
) · · · (22k−1

) + 1 ≤ 22
k−1 + 1 ≤ 22

k
.

Therefore, the result holds by the principle of strong induction.

16. Proposition. If p is a prime number, then every non-zero element of Zp has a multiplicative
inverse.

Proof. Let a be a nonzero number in Zp. This means 1 ≤ a ≤ (p − 1). Therefore, since p is
prime, we have gcd(a, p) = 1.



Bezout’s identity implies that there are integers x, y so that

1 = ax + py

This means that ax ≡ 1 mod p, and so a has a multiplicative inverse in Zp.

We shall use the notation 1
a to denote the multiplicative inverse of a mod p. Just keep in

mind that 1
a is some integer in {1, . . . , p− 1}.

17. Theorem 8 (Fermat’s Little Theorem). Let p be a prime number and let a be a nonzero
element of Zp. Then

ap−1 ≡ 1 mod p.

Proof. Now a belongs to the list of numbers 1, 2, . . . , (p− 1). Consider the list of numbers

a(1), a(2), . . . , a(p− 1) (∗)

all computed mod p. We claim that the list (∗) is the same as all of the numbers on the
original list 1, 2, . . . , (p− 1) after some rearranging.

Proof of claim. We argue by contradiction. Suppose that the list (∗) is not a rearrangement
of all of the numbers on the standard list 1, 2, . . . , (p − 1). Now since we are computing
values mod p, the numbers in the list (∗) above all belong to the list 1, 2, . . . , (p− 1). Since
it is not a rearrangement of the standard list 1, 2, . . . , (p − 1), there must be some numbers
missing. By the pigeonhole principle there are values 1 ≤ x 6= y ≤ (p− 1) for which ax = ay
(two distinct letters x and y get sent to the same pigeonhole ax = ay). Now, the previous
proposition implies that a has a multiplicative inverse 1

a . But then we obtain 1
aax = 1

aay or
x = y and this contradicts x 6= y. This proves the claim.

Now since, a(1), . . . , a(p − 1) is just a rearrangement of 1, 2, . . . , (p − 1) they have the same
product

a(1)a(2) · · · a(p− 1) ≡ (1)(2) · · · (p− 1) mod p

or in other words

(1)(2) · · · (p− 1)ap−1 ≡ (1)(2) · · · (p− 1) mod p.

Again, the previous proposition implies that each nonzero j has a multiplicative inverse
(denoted by 1

j ) and so we can write

1

1

1

2
· · · 1

p− 1
(1)(2) · · · (p− 1)ap−1 ≡ 1

1

1

2
· · · 1

p− 1
(1)(2) · · · (p− 1) mod p

which simplifies out to give
ap−1 ≡ 1 mod p.

18. Exercise/Application. We have proven explicitly in the special cases when m = 2, 3, 5, 7, 11
that m | (am − a) for all integers a. Show that Fermat’s Little Theorem tells us that if p is a
prime number, then p | (ap − a) for all integers a.

We also saw in class notes that there were examples of integers n where 4 - (n4 − n), and
examples where 6 - (n6 − n) etc. You might be tempted to conclude that

(p | (np − n) for all integers n) if and only if p is a prime number.

Fortunately, the universe is not so accommodating (and so is much more interesting!). Google
the term “Carmichael number.”



19. Exercise/Application 2. Compute the following huge powers in modular arithmetic, and
prove that the statements about modular exponents are correct:
1234567891011 mod 11.
3256 mod 7.
785 mod 41.
5223 mod 23.
If p is prime, then ab ≡ (a mod p)(b mod p−1) mod p.
If p and q are distinct primes and gcd(a, pq) = 1, then a(p−1)(q−1) ≡ 1 mod pq.
3123 mod 35. (Hint: Note that 35 = (5)(7).)
72763 mod 143. (Hint: What are the factors of 143?)

20. Hint on Exercise. Start with distinct primes p and q, and any integer a satisfying gcd(a, pq) =
1. Show that p - a and show that q - a.

Since p - a, we know from Fermat’s little theorem that ap−1 ≡ 1 mod p. What can you say
about a(p−1)(q−1) mod p? Rephrase this so that it is a statement about some number being
divisible by p.

Since q - a, we know from Fermat’s little theorem that aq−1 ≡ 1 mod q. What can you say
about a(q−1)(p−1) mod q? Rephrase this so that it is a statement about some number being
divisible by q.

Show how to use the results of the previous 2 paragraphs to obtain the conclusion a(p−1)(q−1) ≡
1 mod pq.

21. Pigeonhole Principle. If n ≥ 2 letters are distributed into m < n (and m ≥ 1) mailboxes
(pigeonholes), then at least two letters end up in the same mailbox.

Proof. We note that the general statement follows from the following statement.
P(n): If n ≥ 2 letters are distributed among (n − 1) pigeonholes, then one pigeonhole will
contain at least two letters. This is because we can think of distributing n letters among
m < n pigeonholes as being the same as distributing the letters among (n − 1) pigeonholes
where (n− 1)−m of the pigeonholes sealed up.

The base case consists of n = 2 letters being distributed into 1 pigeonhole. This one pigeonhole
ends up with both letters.

Assume that the result is true for case n = k. That is if k letters are distributed into k − 1
pigeonholes, then a pigeonhole ends up with at least two letters. Now given k + 1 letters and
k pigeonholes, pick a pigeonhole at random. It has 0, 1 or at least 2 letters in it. If it has at
least 2 letters in it, then we have a pigeonhole with at least two letters, and we are done. If
it has 1 letter in it, we can now see that the remaining k letters have been distributed into
k − 1 pigeonholes, and the existence of a pigeonhole with at least two letters is guaranteed
by the induction hypothesis. Finally, if it has 0 letters, then the k + 1 letters (and therefore
any k sub collection of these letters) are being distributed into k − 1 pigeonholes, and again
the induction hypothesis guarantees that one of these k − 1 pigeonholes contains at least 2
letters. In all three cases, we have shown that P (k + 1) is true.

The result now follows by the principle induction.

The pigeonhole counting principle is used in the proof of Fermat’s Little Theorem.

22. Proposition. ca ≡ cb mod m if and only if a ≡ b mod m
gcd(c,m) .



Proof. One direction is immediate. If a ≡ b mod m
gcd(c,m) , then m

gcd(m,c) | (b − a). This

means that (b− a) = m
gcd(m,c)q for some integer q. Multiplying across by c gives

c(b− a) = c
m

gcd(m, c)
q = m

c

gcd(m, c)
q

But c
gcd(m,c) is an integer, and so m | c(b− a) or ca ≡ cb mod m.

Proving the reverse direction uses a previous result. If ca ≡ cb mod m, then m | c(b−a) and
so c(b− a) = mx for some integer x. Dividing across by gcd(m, c) gives

c

gcd(m, c)
(b− a) =

m

gcd(m, c)
x

This means that m
gcd(m,c) |

c
gcd(m,c)(b− a). But m

gcd(m,c) and c
gcd(m,c) are relatively prime, and

so the proposition in item 7 implies that m
gcd(m,c) | (b− a). That is a ≡ b mod m

gcd(m,c) .

23. Theorem (Linear Congruences). The congruence equation ax ≡ b mod m has a solution
if and only if gcd(a,m) | b.
If x0 is one solution, then the complete list of all solutions is given by

x0 + k
m

gcd(a,m)
for 0 ≤ k ≤ gcd(a,m)− 1.

Proof. If ax ≡ b mod m has a solution, then b−ax = mq for some integers x and q. Therefore
b is an integer linear combination of a and m, and so gcd(a,m) | b.
Conversely, if gcd(a,m) | b, then b = gcd(a,m)w for some integer w. Bezout’s identity tells
us that gcd(a,m) = ra + sm for some integers r, s. Combining gives

b = gcd(a,m)w = (ra + sm)w = a(rw) + m(sw)

This means that b− a(rw) is divisible by m, and so a(rw) ≡ b mod m.

Finally, if x and x0 are two solutions of ax ≡ b mod m then a((x − x0) ≡ 0 mod m. This
means a(x− x0) = mp for some integer p. Dividing across by gcd(a,m) gives

m

gcd(a,m)
| a

gcd(a,m)
(x− x0)

and so (by the proposition in item 7) m
gcd(a,m) | (x− x0). This gives the solution

x = x0 + k
m

gcd(a,m)
for k = 0, 1, 2 . . .

24. Theorem (Simultaneous Congruences — Chinese Remainder Theorem). The fol-
lowing puzzle appears in the Brahma-Sphuta-Siddhanta (Brahma’s Correct System) by Brah-
magupta (born 598 AD):

An old woman goes to market and a horse steps on her basket and crushes the eggs. The
rider offers to pay for the damages and asks her how many eggs she had brought. She does
not remember the exact number, but when she had taken them out two at a time, there was
one egg left. The same happened when she picked them out three, four, five, and six at a time,



but when she took them seven at a time they came out even. What is the smallest number of
eggs she could have had?

Theorem (Chinese Remainder Theorem). Let m1, . . . ,mk be pairwise relatively prime
natural numbers. The system of simultaneous linear congruences

x ≡ a1 mod m1 , . . . , x ≡ ak mod mk

has a unique solution mod M , where M = m1 . . .mk.

Proof. We establish existence of a solution first. Indeed, let zi = M/mi and note that for
each i the congruence

ziyi ≡ 1 mod mi

has a solution yi (because gcd(zi,mi) = 1). Now set

x = a1y1z1 + · · ·+ akykzk

Note that mi | zj when i 6= j. Therefore x ≡ 0 + · · · 0 + aiyizi + 0 + · · ·+ 0 mod mi. But we
found the yi so that yizi ≡ 1 mod mi. Thus x ≡ aiyizi ≡ ai mod mi.

Now for uniqueness. If x and y are two solutions, then x − y ≡ 0 mod mi for each i. This
means mi | (x−y) for all i. But the mi are pairwise relatively prime. Thus (m1 . . .mk) | (x−y).
This means M | (x− y) or in other words x ≡ y mod M .

25. The number of eggs problem. We rewrite the statements about the (as yet unknown)
quantity x of eggs in modern congruence notation.

• x ≡ 1 mod 2

• x ≡ 1 mod 3

• x ≡ 1 mod 4

• x ≡ 1 mod 5

• x ≡ 1 mod 6

• x ≡ 0 mod 7

Unfortunately not all of the mk are relatively prime (e.g., 2, 4, 6 all have 2 in common).
However, the first congruence just tells us that x is an odd number, so we can eliminate this
congruence, because x ≡ 1 mod 4 will guarantee oddness. We also remove the congruence
x ≡ 1 mod 6 because 6 has factors in common with 4 and 3. We will manually check if our
solution satisfies x ≡ 1 mod 6. This leaves us with

• x ≡ 1 mod 3

• x ≡ 1 mod 4

• x ≡ 1 mod 5

• x ≡ 0 mod 7

where 3, 4, 5, 7 are all pairwise relatively prime.

Next, we work through the steps of the CRT. Let M = (3)(4)(5)(7) = 420 and

(a) let z1 = (4)(5)(7) = 140, z2 = (3)(5)(7) = 105, z3 = (3)(4)(7) = 84, z4 = (3)(4)(5) = 60.



(b) Next, solve for multiplicative inverses

y1 =
1

140
=

1

2
= 2 mod 3

y2 =
1

105
=

1

1
= 1 mod 4

y3 =
1

84
=

1

4
= 4 mod 5

y4 =
1

60
=

1

4
= 2 mod 7

(c) Now use the formula in the CRT.

x = a1y1z1+a2y2z2+a3y3z3+a4y4z4 = (1)(2)(140)+(1)(1)(105)+(1)(4)(84)+(0)(2)(60) = 721.

(d) Finally we have x = 721 mod 420 or in other words x = 301. Since 301 ≡ 1 mod 6 the
final congruence relation is also satisfied. The minimum number of eggs is 301.


