
Prop. If n is an integer, then 3 | (n3 − n).

Proof. By the Division Algorithm n is congruent to one of 0, 1 or 2 mod 3. There are three cases
to consider.

1. If n ≡ 0 mod 3, then n3 − n ≡ 0− 0 ≡ 0 mod 3.

2. If n ≡ 1 mod 3, then n3 − n ≡ 1− 1 ≡ 0 mod 3.

3. If n ≡ 2 mod 3, then n3 − n ≡ 8− 2 ≡ 6 ≡ 0 mod 3.

In all three cases n3 − n ≡ 0 mod 3, and so 3 | (n3 − n).

Prop. If n is an integer, then 5 | (n5 − n).

Proof. By the Division Algorithm n is congruent to one of 0, 1, . . . 4 mod 5. There are five cases
to consider.

1. If n ≡ 0 mod 5, then n5 − n ≡ 0− 0 ≡ 0 mod 5.

2. If n ≡ 1 mod 5 or if n ≡ 4 ≡ −1 mod 5, then n5−n ≡ (±1)5− (±1) ≡ ±(1−1) ≡ 0 mod 5.

3. If n ≡ 2 mod 5 or n ≡ 3 ≡ −2 mod 5, then n5−n ≡ (±2)5− (±2) ≡ ±(25− 2) ≡ 0 mod 5.

In all five cases n5 − n ≡ 0 mod 5, and so 5 | (n5 − n).

Prop. If n is an integer, then 7 | (n7 − n).

Proof. By the Division Algorithm n is congruent to one of 0, 1, . . . , 6 mod 7. There are seven cases
to consider.

1. If n ≡ 0 mod 7, then n7 − n ≡ 0− 0 ≡ 0 mod 7.

2. If n ≡ 1 mod 7 or if n ≡ 6 ≡ −1 mod 7, then n7−n ≡ (±1)7− (±1) ≡ ±(1−1) ≡ 0 mod 7.

3. If n ≡ 2 mod 7 or if n ≡ 5 ≡ −2 mod 7, then n7 − n ≡ (±2)7 − (±2) ≡ ±(27 − 2) ≡ 0
mod 7.

4. If n ≡ 3 mod 7 or if n ≡ 4 ≡ −3 mod 7, then n7 − n ≡ (±3)7 − (±3) ≡ ±(37 − 3) ≡ 0
mod 7.

In all seven cases n7 − n ≡ 0 mod 7, and so 7 | (n7 − n).

Remark. The case of 11 | (n11−n) is similar. We will see a uniform proof that p | (np−n) for all
natural numbers n in the case p is a prime. It will be a corollary of Fermat’s Little Theorem.



Q. Does 4 divide n4 − n for every integer n?

Answer. No. By the Division Algorithm n is congruent to one of 0, 1, 2, 3 mod 4. There are 4
cases to consider.

1. If n ≡ 0 mod 4, then n4 − n ≡ 0− 0 ≡ 0 mod 4.

2. If n ≡ 1 mod 4, then n4 − n ≡ 1− 1 ≡ 0 mod 4.

3. If n ≡ 2 mod 4, then n4 − n ≡ 16− 2 ≡ 2 mod 4.

4. If n ≡ 3 mod 4, then n4 − n ≡ 81− 3 ≡ 2 mod 4.

Thus, 4 | (n4 − n) in the cases n ≡ 0, 1 mod 4, and 4 - (n4 − n) in the cases n ≡ 2, 3 mod 4.

Remark. The questions of whether a | (na−n) for a = 6, 8, 9, 10 are handled similarly to this one.

Remark. You may be tempted to conjecture the following. If p is a prime number, then p | (np−n)
for all integers n. This would be correct, and a uniform proof (for all primes p) follows from
Fermat’s Little Theorem.

Remark. You may be tempted to conjecture the following. If a is not a prime number, then
a - (na − n) for some integers n.

You could check this conjecture for all composite numbers up to 500, and find that it is true.
However, there are composite numbers a for which a | (na − n) for all integers n. Such numbers
are called Carmichael numbers. The smallest Carmichael number is a = 561 = (3)(11)(17).

To see that 561 | (n561 − n) for all integers n, we break the problem into more manageable
pieces.

• Show that 3 | (n561 − n) for all integers n.

• Show that 11 | (n561 − n) for all integers n.

• Show that 17 | (n561 − n) for all integers n.

• Since 3, 11, and 17 are all relatively prime, conclude that 561 | (n561 − n) for all integers n.

The first 3 statements above can be verified by hand. Computing big powers is not so bad, since
we are working modulo relatively small numbers (3, 11, and 17).

However, Fermat’s Little Theorem will greatly speed things up. We prove the middle statement
as an example. Fermat’s Little Theorem tells us that

n10 ≡ 1 mod 11

This implies that
n560 ≡ (n10)56 ≡ 156 ≡ 1 mod 11

Now multiplying across by n gives
n561 ≡ n mod 11

or in other words 11 | (n561 − n).


