Q1]...[10 points] Use the method of Lagrange Multipliers to find the shortest distance from the point $(1,2,3)$ to the curve of intersection of the surface $z=1-x^{2}-y^{2}$ and the plane $x+y-z=0$. Write down the function that is to be extremized, and write down the Lagrange Multiplier equations (how many equations? how many unknowns?). You do not have to solve these equations.

Q2]...[10 points] Find the direction in which the function $f(x, y, z)=x^{2}+2 x y+y^{3}-3 x z$ has the maximum rate of change at the point $(1,0,2)$. Also, find the directions in which the rate of change of f is zero at the point $(1,0,2)$.

Q3]...[10 points] You are given that $z=f(x, y), x=x(t)$ and $y=y(t)$, where all functions have continuous second (partial) derivatives.
Write $\frac{d z}{d t}$ in terms of partials of z with respect to x and y and derivatives of x and y with respect to t.

Write $\frac{d^{2} z}{d t^{2}}$ in terms of partials of z with respect to x and y and derivatives of x and y with respect to t.

Q4]... [10 points] Write down (do not evaluate) multiple integral expressions for the volume of the region which is inside the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and above the cone $z^{2}=x^{2}+y^{2}$, in

(a) Spherical Coordinates

(b) Cylindrical Coordinates

Q5]...[10 points] Find a double integral expression for the surface area of the portion of the surface $z=4-x^{2}-y^{2}$ which lies above the plane $z=3$. Write your double integral in Polar Coordinates. You do not have to evaluate your integral.

Q6]... [10 points] Compute the flux of the vector field $\mathbf{F}=\langle y,-x, 4\rangle$ upward (that is use an upward pointing normal) through the portion of the surface $z=1-x^{2}-y^{2}$ which lies in the first octant $(x \geq 0$, $y \geq 0, z \geq 0$).

Q7]... [10 points] Let $\mathbf{F}=\langle x+y, x-z, z-y\rangle$.

- Compute curl(F).
- Find a function ϕ so that $\nabla \phi=\mathbf{F}$.
- Evaluate (by whatever way you can) $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the straight line path from $(1,0,-1)$ to $(0,-2,3)$.

Q8]... [10 points] Use Green's Theorem to compute the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ (you'll end up evaluating a suitable line integral).

Q9]. . . [10 points] Use Stokes Theorem to evaluate

$$
\oint_{C} y d x+z d y+x d z
$$

where C is the curve of intersection of the sphere $x^{2}+y^{2}+z^{2}=4$ with the plane $x+y+z=0$, oriented so as to be consistent with the normal vector of the plane which points into the first octant $(x \geq 0, y \geq 0$, $z \geq 0$).

Q10]. . . [10 points] Use the Divergence Theorem to evaluate

$$
\iint_{S}\left(x+y^{2}+z^{3}\right) d S
$$

where S is the unit sphere centered on the origin.
[Hint. First write $\left(x+y^{2}+z^{3}\right) d S$ as $\mathbf{F} \cdot d \mathbf{S}$ for suitable vector field \mathbf{F}.]

Bonus]... Use the Divergence Theorem to prove the volume of the cone with vertex at the origin, and base of area A, bounded by a piecewise smooth, simple closed curve C on the plane $z=h$ is given by the usual formula $\frac{A h}{3}$.

[Hint. Think about the vector field $\mathbf{F}=\langle x, y, z\rangle$]

Rough Work Page

