
MATH 2443–008 Calculus IV Spring 2014
Vector fields and Gradients in 2-dimensions
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1. The first operator grad takes a function f = f(x, y) and returns the vector field

grad(f) = ∇f = 〈fx, fy〉 .

2. The second operator diff takes a vector field F = 〈P (x, y), Q(x, y)〉 and returns the “differ-
ence” of partial derivatives

diff(F) = diff(〈P,Q〉) = Qx − Py .

Note that the partial derivatives are just functions of (x, y), and the difference of two partial
derivatives is a function of (x, y).

3. It is clear that the composition of these two operators gives the zero map.

diff ◦ grad(f) = diff(grad(f)) = diff(〈fx, fy〉) = (fy)x − (fx)y = 0 .

4. Question. Which vector fields F = 〈P,Q〉 are the gradient vector fields of functions?

(a) We know that one condition is that diff(F) = 0. This gives a good test; if diff(F) 6= 0,
then we conclude that F is not the gradient vector field of a function.

(b) However, we have seen that the vector field

A =
〈−y, x〉

x2 + y2

defined on R
2 − {(0, 0)} satisfies diff(A) = 0 but A is not the gradient of a function.

(c) Indeed, we saw in class that A is locally the gradient of the “angle function” f(x, y) =
tan−1(y/x) + c. However, the “angle function” is not well defined on R

2 −{(0, 0)}; one
has to add 2π every time one travels counterclockwise around a circle which encloses
(0, 0).

(d) Suppose F is a vector field defined on R
2 − {(0, 0)} which satisfies: (i) diff(F) = 0;

and, (ii)
∮

S1 F · dr 6= 0 where S1 is the unit circle centered at (0, 0) with the standard
counterclockwise orientation.

i. Use Green’s theorem to show that
∮

C

F · dr =

∮

S1

F · dr

for ANY counter clockwise oriented circle C which encircles once around (0, 0).



ii. Use Green’s theorem to show that

F −

∮

S1 F · dr

2π
A

is a conservative vector field. Here A is the special vector field introduced in (b)
above.

iii. Conclude that if F defined on R
2 − {(0, 0)} satisfies diff(F) = 0, then

F = ∇f +

∮

S1 F · dr

2π
A

for some scalar field (function) f(x, y) on R
2 − {(0, 0)}. That is, F is a gradient

plus a constant multiple of A.

(e) More generally, suppose that F is a vector field defined on R
2 − {(0, 0), (p, q)} which

satisfies diff(F) = 0, then

F = ∇f +

∮

C1

F · dr

2π

〈−y, x〉

x2 + y2
+

∮

C2

F · dr

2π

〈−(y − q), (x− p)〉

(x− p)2 + (y − q)2

for some scalar field (function) f(x, y) on R
2−{(0, 0), (p, q)}, and where C1 and C2 are

small circles (bounding disjoint disks) about (0, 0) and (p, q) respectively. That is, F is

a gradient plus a constant multiple of A and a constant multiple of 〈−(y−q),(x−p)〉
(x−p)2+(y−q)2

.

(f) Generalize the result above to the case of R2 with N points removed.

5. Remark. The sets of functions and vector fields above are actually vector spaces (from your
linear algebra class). Just like with regular vectors in 3-dimensions, one can add functions
(or vector fields) or multiply them by constants to get new functions (or vector fields).
The differential operators grad and diff respect sums and constant multiples (these are just
versions of the standard “rules” of differentiation), and so are examples of linear maps.

(a) The kernel of diff is the set of all vector fields F defined on the domain D such that
diff(F) = 0.

ker(diff) = {F |F a vector field on D such that diff(F) = 0}

This is a vector subspace of the space of vector fields.

(b) The image of grad is the set of all vector fields F of the form F = ∇f for some function
f defined on the domain D.

Im(grad) = {∇f | f(x, y) a function on D}

This is a vector subspace of the space of vector fields.

(c) Now diff ◦ grad = 0 implies that one of these spaces is a subspace of the other:

Im(grad) ⊂ ker(diff)

Furthermore, the Green’s theorem applications above tell us that the extra dimensions

needed to pass from Im(grad) to ker(diff) is equal to the number of “holes” in the
domain D.


