MATH 2443-008 Calculus IV Spring 2014

Orthogonal Curvilinear Coordinates in 3—Dimensions
1. Consider a coordinate system in R? defined by

r(uy, ug, ug) = (w(ug, ug, u3), y(ur, us, ug), 2(u, ug, us))

Setting two of the coordinates u; to be constant gives a parametric coordinate curve with the
third coordinate as parameter. Since these coordinate curves are not usually straight lines, the
coordinates are called curvilinear.

2. Taking partial derivatives gives tangent vectors
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to the coordinate curves. The coordinates are said to be orthogonal if these three tangent
vectors are mutually perpendicular (orthogonal) at each point of space
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3. Unit basis vectors. One scales the tangent vectors to have length 1, to get a basis (or moving
frame) of vectors at each point. Define the scale factors h; by
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and define the unit vectors G; by
. 1 or
u, = —

We usually order the basis vectors so that they form a right handed system: @; x G, = 13,
ﬁg X ﬁ3 = ﬁl, and ﬁ3 X ﬁl = ﬁg.

4. Cylindrical Coordinates. Cylindrical coordinates are a example of an orthogonal curvilinear
coordinate system.
r(r,0,z) = (rcosf,rsinf, z)

with tangent vectors, scale factors, and unit vectors given by

& = (cos @, sin6,0) hy =1 t = (cosf,sinf, 0)
% = <_T Sil’le,’f’COSQ,(]) h2 =T é: <— Sine,COS¢970>
& =10,0,1) hs =1 2= (0,0,1)

You should verify that these are mutually orthogonal unit vectors.

5. Spherical Coordinates. Spherical coordinates are another example of an orthogonal curvi-
linear coordinate system.

r(p,¢,0) = (psingcosl, psinpsinf, pcos @)



with tangent vectors, scale factors, and unit vectors given by

g—; = (sin ¢ cos B, sin ¢ sin 6, cos ¢) hi=1 p = (sin ¢ cos @, sin ¢ sin 0, cos ¢)
g—; = (pcospcosb, pcospsinf, —psin @) hy = p b= (cos ¢ cos B, cos ¢ sin @, — sin @)
9 — (—psin¢gsinb, psin ¢ cos,0) hs = psin ¢ 6 = (—sinb,cosf,0)

You should verify that these are mutually orthogonal unit vectors.

. Gradient in Curvilinear Coordinates. Let f be a scalar field (function). Recall that the
components of a vector with respect to the usual basis i,J,k are simply the projections of
the vector onto the i 1, J and k directions. Likewise, we compute the Gi,—components of Vf by
projecting the vector V f onto @;. This is
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The first equality comes from the definition of V f and ;, and the second inequality is just the
chain rule.

Thus, we get the following formula for V f
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In cylindrical coordinates the gradient is
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In spherical coordinates the gradient is
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. Gradient Expression for the Basis Vectors. Note that
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The last equality holds because gZ; is equal to 0 when j # i, and is equal to 1 when j = 4.

Thus, we have another expression for the 1; in terms of gradients
ﬁl == h1Vu1 ﬁg == hQVUg ﬁ3 == h3VU3 (3)

This should make intuitive sense to you. Recall that Vu; at a point P is normal to the level
surface u; = C, a constant. The coordinate curves for us and for ug through the point P by
definition will keep u; fixed, and so they lie in the level surface u; = C'. Therefore the normal
vector Vuy at P is perpendicular to the (scaled) tangent vectors iy and i3 at P. So Vuy is a
multiple of ;. Equation (2) tells us the precise multiple. Likewise for Vuy and Vusg.



8. The Divergence in Curvilinear Coordinates. Let F be a vector field with coordinate
functions F; with respect to the unit vectors 6;. That is

F = Fia; + Fyuy + Fsis
where the F; are functions of (uy, us, us).

We compute the divergence V - F using properties of the differential operator V. First V
satisfies a sum rule, and so it suffices to determine each V - (F;Q;) individually. Furthermore,
the product rule for V- gives

V- (Fi) = (VF) -t + F(V-) (4)
The first term on the right hand side of equation (4) is easy to compute now that we know an
expression (from equation (1)) for the gradient. It is just
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The second term on the right hand side of equation (4) takes a little more thought. For
concreteness, we compute Fi(V - 11;). The other cases (i = 2,3) are handled similarly.

Fl(Vﬁl) = F1V'(ﬁ2><ﬁ3)
= F1V . (hQVUg X thUg)
= F1V : (hgthUg X VUg)
= F1V(h2h3) . (VUQ X VUg) + F1h2h3V . (VUQ X VU3)
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The first equality is because the 0; form a right handed system. The second equality holds
by equation (3). The third equality is just pulling scalars out of a cross product. The fourth
equality use the product rule for the operator V-. The fifth equality is because V - (V f x Vg)
vanishes (see below), and uses equation (3) to convert the first term back to @; vectors. The
second to last equality uses equation (1) to compute the first component of V(hyhs).

+0

[Aside: We see that V- (V f x Vg) vanishes because of a vector cross product identity and the
fact that V x V = 0. Specifically,

V- (VfxVg) = Vg-(VxVf) = Vf-(VxVg) = 0]
So, in the case i = 1, equation (4) becomes

V- (Fy) = (VF) -4 + F(V-1y)
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We obtain similar expressions in the case ¢ = 2,3. Combining all three gives the following
expression for the divergence

V-F:

1 {3(@;,3}71) N O(hyhsFy) N 8(h1h2F3)} (6)
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In cylindrical coordinates the divergence of F = Fit + F29 + F37 is
1[o(rF o(F: o(rk:
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In spherical coordinates the divergence of F = Fip + Fyﬁ + F30 is
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The Laplacian in Curvilinear Coordinates. Combining the results from the two previous
sections, we get an expression for the Laplacian (A = V?).

Af = V*f = V.Vf
:V‘<18fA 1 of . 1af)
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In cylindrical coordinates the Laplacian is
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In spherical coordinates the Laplacian is
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The Curl in Curvilinear Coordinates. Let F be a vector field with coordinate functions
F; with respect to the unit vectors @1;. That is

F = Fita, + Fyhy + F3is

where the F; are functions of (uy, us, u3).

We compute the curl V x F using properties of the differential operator Vx. First V x satisfies
a sum rule, and so it suffices to determine each V x (F;i;) individually. Furthermore, the
product rule for Vx gives

V x (F;) = (VFE) x; + Fi(V x @) (7)

For concreteness, we’ll work out the right side of equation (7) in the case i = 1. The cases
1 = 2,3 are similar.



Using equation (1) we can write out the first term on the right side of equation (7) as

1 OF; 1 OF; 1 OF; .
h_18—u1m h_2a—u2u2 hs Ous

1 0F; . 1 0F;
hyOus o Ouy

(VFl) X ﬁl =

The second equality just uses the fact that the 1; form a right handed system.

We can use the gradient version of the @; (from equation (3)) to write the second term on the
right side of equation (7) as

Fl(V X ﬁl) = Fl(V X (h1Vu1))
= F1V(h1> X V(Ul) + Flhl(V X Vul)
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Combining the results of the past two paragraphs we get that equation (7) becomes
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There are similar expressions for the case i = 2,3. We recognize sum of all these as the output
of a 3 x 3—determinant, and so obtain the the following expression for the curl
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In cylindrical coordinates the Curl of F = Fit + Fgé + F37 is
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In spherical coordinates the Curl of F = Fip + F2q5 + F30 is
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