Q1]...[10 points] Find and classify the critical points of the function

\[f(x, y) = x^4 + y^4 - 4xy \]
Q2]...[10 points] Use Lagrange multipliers to find the shortest distance from the origin to the surface $xyz^2 = 2$.

Q3]...[10 points] We are unable to anti-differentiate e^{-x^2}. However, we can still evaluate the double integral

$$\int_0^1 \int_y^1 e^{-x^2} \, dx\,dy$$

Show all the steps involved in evaluating this double integral.
Q4. [10 points] Use double integrals to find the area of the portion of the conical surface $3z^2 = x^2 + y^2$ where $1 \leq z \leq 2.$
Q5]...[10 points] Consider the triple integral

\[\int_0^1 \int_0^{x-z} \int_0^1 f(x, y, z) \, dy \, dx \, dz \]

Sketch the projections of the region of integration on the three coordinate planes.

Rewrite the integral so that the outermost integral is with respect to \(x \) and the innermost integral is with respect to \(z \).
Bonus: Find the surface area of the portion of the sphere $x^2 + y^2 + z^2 = 2$ of radius $\sqrt{2}$ which lies above the square with vertices $(\pm 1, \pm 1)$ in the xy-plane.