\(\mathbf{F} = \langle P, Q \rangle \) where \(P \) and \(Q \) have continuous first partial derivatives on a domain \(D \) in \(\mathbb{R}^2 \), and
\[
P_y = Q_x
\]
on all of \(D \)

\(\mathbf{F} = \langle P, Q, R \rangle \) where \(P, Q \) and \(R \) have continuous first partial derivatives on a domain \(D \) in \(\mathbb{R}^3 \), and
\[
P_y = Q_x, \quad P_z = R_x, \quad Q_z = R_y
\]
on all of \(D \)

Green’s Thm
(simply connected \(D \))
Set \(P = f_x \) etc and just compute
Stokes’ Thm
(eg. \(D = \mathbb{R}^3 \))

\[
\int_C \mathbf{F} \cdot d\mathbf{r} = 0
\]
for every closed path in \(D \)

\[
\int_C \mathbf{F} \cdot d\mathbf{r}
\]
is independent of the path \(C \) between two points of \(D \)

I. Pick a basepoint.
II. Use \(\int_C \mathbf{F} \cdot d\mathbf{r} \) in order to define a function \(f \).
III. Verify that \(\nabla f = \mathbf{F} \).

The Fundamental Theorem:
\[
\mathbf{F} = \nabla f
\]
implies that
\[
\int_C \mathbf{F} \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))
\]

\(\mathbf{F} \) is conservative means
\[
\mathbf{F} = \nabla f
\]
where \(f \) is some function defined on \(D \)