Fa'14: MATH 2513–002	Discrete Mathematics	Noel Brady	
Monday 09/08/2014	Midterm I	9:30–10:20am	
Name:	Student ID:	Student ID:	

Instructions.

- 1. Attempt all questions.
- 2. Do not write on back of exam sheets. Extra paper is available if you need it.
- 3. Show all the steps of your work clearly.

Question	Points	Your Score
Q1	25	
Q2	25	
Q3	25	
Q4	25	
TOTAL	100	

Q1]...[25 points]

1. Give the definition of an *odd integer*.

2. Give a detailed proof of the following proposition about integers n.

If n is odd, then n^2 is odd.

3. Is the following proposition about integers n true or false? Why? If n^2 is even, then n is even.

Q2]...[25 points]

1. Write down the *converse* of the conditional statement $P \longrightarrow Q$.

2. Write down the *contrapositive* of the conditional statement $P \longrightarrow Q$.

3. Which of the two statements above are logically equivalent to the original statement $P \longrightarrow Q$?

- 4. For each of the following statements, say whether it is equivalent to the negation of a conditional: $\neg(P \longrightarrow Q)$. Give reasons for your answers.
 - (a) $\neg P \lor Q$

(b) $\neg P \land Q$

(c) $P \wedge \neg Q$

(d) $P \lor \neg Q$

Q3]...[25 points] Give a careful proof of the following proposition about real numbers x and y. If it helps, you may use the fact that the product of an arbitrary real number and 0 is equal to 0.

If $x \neq 0$ and $y \neq 0$, then $xy \neq 0$.

Q4]...[25 points] Let P(x, y) be the predicate $x \leq y$. Say which of the following quantified statements are true for the universal set \mathbb{N} of all positive integers. Give reasons to support your answers.

1. $(\forall x \in \mathbb{N})(\forall y \in \mathbb{N})P(x, y)$

2. $(\forall x \in \mathbb{N}) (\exists y \in \mathbb{N}) P(x, y)$

3. $(\exists x \in \mathbb{N}) (\forall y \in \mathbb{N}) P(x, y)$

4. $(\exists x \in \mathbb{N}) (\exists y \in \mathbb{N}) P(x, y)$

Write down the negation of the statement $(\forall x \in \mathbb{N})(\exists y \in \mathbb{N})P(x, y)$.