Topology I [5853-001] Homework

A "topological proof" that there are infinitely many prime numbers.

For $n \in \mathbb{Z} \backslash\{0\}$ and $r \in\{0, \ldots, n-1\}=\{0\} \cup S_{n}$ define

$$
B_{n, r}=\{m n+r \mid m \in \mathbb{Z}\}
$$

that is, the set of integers which have remainder r on division by n. Note that $B_{1,0}=\mathbb{Z}$ while $B_{2,0}$ and $B_{2,1}$ denote the sets of even and odd integers respectively.

Complete the following steps.
Step 1. Prove that the collection

$$
\mathcal{B}=\left\{B_{n, r} \mid n \in \mathbb{Z} \backslash\{0\}, r \in\{0\} \cup S_{n}\right\}
$$

is a basis for a topology, \mathcal{T}, on \mathbb{Z}.
Step 2. Prove that

$$
B_{n, 0}=\mathbb{Z} \backslash \bigcup_{r \in S_{n}} B_{n, r}
$$

Claim 3. Each $B_{n, 0}$ is closed in this topology on \mathbb{Z}.
Claim 4. If there were only finitely many primes, then $\mathbb{Z} \backslash\{ \pm 1\}$ is closed. [Hint: If the list of all primes is p_{1}, \ldots, p_{k}, then then show that $\mathbb{Z} \backslash\{ \pm 1\}$ is equal to $\left.B_{p_{1}, 0} \cup \cdots \cup B_{p_{k}, 0}\right]$
Claim 5. Conclude that $\{ \pm 1\}$ is open, and that this is a contradiction (why?).

