

Instructions.

- 1. Attempt all questions.
- 2. Do not write on back of exam sheets. Extra paper is available if you need it.
- 3. Show all the steps of your work clearly.

Question	Points	Your Score
Q1	20	
Q2	20	
Q3	24	
Q4	36	
TOTAL	100	

Q1]...[20 points] Define what it means for a function $f : A \to B$ to be surjective.

Recall that (0, 1) denotes the interval $\{x \in \mathbb{R} \mid 0 < x < 1\}$, and that \mathbb{Z}^+ denotes the set of positive integers. Give a detailed proof that no function

$$f:\mathbb{Z}^+ \to (0,1)$$

can be surjective. (This is the usual Cantor diagonalization argument that (0, 1) is uncountable).

Q2]...[20 points] Prove that there is a bijection between the set \mathbb{Z} and the set \mathbb{Z}^+ .

Prove that there is a bijection between the set $\mathbb{Z}^+ \times \mathbb{Z}^+$ and the set \mathbb{Z}^+ .

Q3]...[24 points] Define what it means for the set A to be countable.

Define what it means for the set A to be uncountable.

Say whether each of the following sets is countable or not.

- 1. The set \mathbb{Z} of all integers.
- 2. The set \mathbb{R} of all real numbers.
- 3. The set \mathbb{Q} of all rational numbers.
- 4. The set of all irrational numbers.
- 5. The set of all functions from $\{1\}$ to \mathbb{R} .
- 6. The set of all functions from \mathbb{R} to $\{1\}$.
- 7. The set of all functions from $\{1, 2, 3\}$ to \mathbb{Z} .
- 8. The set of all functions from \mathbb{Z} to $\{1, 2, 3\}$.
- 9. The set of all lines in the plane \mathbb{R}^2 .
- 10. The power set $\mathbb{P}(\mathbb{Z})$ of \mathbb{Z} .

Q4]...[36 points] True or False.

- 1. The composition of reflections in two intersecting lines is a rotation.
- 2. The set of symmetries of a regular pentagon (5 sides) has 10 elements.
- 3. The set of symmetries of a regular polygon with 1,000 sides is countable.
- 4. The set of symmetries of a circle is countable.
- 5. Perm $(\{1, 2, \ldots, n\})$ has n^n elements.
- 6. $\operatorname{Perm}(\mathbb{Z}^+)$ is countable.
- 7. (123)(245)(132) = (345).
- 8. If m is reflection in some line, and R is a 90° counterclockwise rotation about a point O, then mRm is a 90° counterclockwise rotation about the point m(O).
- 9. (12)(23)(34)(45)(56)(67)(78) = (12345678)
- 10. (12)(23)(34)(45)(34)(23)(12) = (15).
- 11. The composition of reflections in the three sides of a triangle (taken in any order) is a rotation.
- 12. The composition of reflections in the four sides of a rectangle (taken in any order) is a translation.