
MATH 2513-001 Discrete Mathematics Fall 2009
Symmetries of the plane, rigid motions

1. The euclidean plane E
2 is just the usual cartesian plane R

2 = R×R with some euclidean geometry
added in to the mix. This is commonly done by using Pythagoras’ Theorem to tell one how to
compute distances between points

d((x, y), (a, b)) =
√

(x − a)2 + (y − b)2

This is not anything new or scary. It is just the usual “distance formula” from coordinate geometry.
It is good to realize that this is how euclidean geometry enters the picture.

2. An isometry (or rigid motion) of the plane is just a bijective map of the plane which preserves
distances. That is, it is a bijective map f : E

2 → E2 with the property that

d(f(x, y), f(a, b)) = d((x, y), (a, b))

for all points (x, y) and (a, b) in E
2.

3. Exercise. Show that any map f : E
2 → E

2 which preserves distances is a bijection. So, we do
not need to use the word bijective in definition 2 above.

4. Exercise. Show that the set of isometries of the plane form a group under composition. This
group is denoted by Isom(E2) and is called the euclidean isometry group. It is a subgroup of the
group Perm(E2).

5. Exercise. Show that an isometry is completely determined by where it sends three non collinear
points.

6. Example. A reflection in a line l is defined as follows. Given a point (x, y) firs draw the unique
perpendicular m to l. Next define l(x, y) to be (x, y) if (x, y) lies on the line l, otherwise define it
to be the unique point on m which is different from (x, y) and whose distance from l equals the
distance from (x, y) to l.

Show that a reflection in a line is an isometry.

7. Example. A rotation through angle θ about the point P takes a point Q to the point Q′ so that
the angle QPQ′ measures θ counterclockwise.

Show that a rotation is an isometry of E
2.

8. Example. Let v = 〈a, b〉 be a vector in the plane. A translation through v is defined to be the
map

(x, y) �→ (x + a, y + b)

9. Example. Let l be a line in E
2 and v be a vector in E

2 which is parallel to l. A glide reflection
with axis the line l and translation component v is defined to be the composition of translation
through v followed by reflection in l.

10. Exercise. Show that the composition of reflections in two lines which intersect in a point P equals
a rotation about P through twice the angle between the lines. Hint: it suffices to show that this is
the behavior of the composition on three non collinear points.

11. Exercise. Show that the composition of reflections in two parallel lines is a translation through a
vector which is perpendicular to the lines, and whose length equals twice the distance between the
lines. The vector points in the direction from the first to the second line (in order of composition).
Hint: it suffices to show that this is the behavior of the composition on three non collinear points.



12. Exercise. Show that every isometry is given by composition of reflections in at most three lines.
Hint: see what your given isometry does to three non collinear points. Now show that a triangle
can be mapped onto any other triangle which is congruent to it by composition of reflections in at
most three lines.

13. Exercise. Show that there are 4 types of isometries of E
2: rotations, translations, reflections and

glide reflections. The identity element IE2 can be considered as either a rotation (through angle of
0) or a translation (through a distance of 0).

14. Coordinates. Show that reflection in the line through the origin and making angle θ with the
positive x-axis is given by

(x, y) �→ (x cos(2θ) + y sin(2θ), x sin(2θ) − y cos(2θ))

15. Coordinates. Show that rotation through θ about the origin is given by

(x, y) �→ (x cos(θ) − y sin(θ), x sin(θ) + y cos(θ))

16. Coordinates. Show that every element of Isom(E2) can be written out explicitly in coordinates
either as

(x, y) �→ (x cos(2θ) + y sin(2θ) + a, x sin(2θ) − y cos(2θ) + b)

for suitable angle θ and numbers a and b, or as

(x, y) �→ (x cos(θ) − y sin(θ) + a, x sin(θ) + y cos(θ) + b)

for suitable angle θ and numbers a and b.

17. Coordinates. Use coordinates to check that the composition of two reflections in lines through
the origin is indeed a rotation about the origin. Use the formula for a reflection given in part 14
for two angles α and β. You’ll have to also use the formula for a rotation given in part 15, and you
will have to remember your addition/subtraction laws for sine and cosine from trig.

18. Coordinates. Use coordinates to check that the composition of two rotations about the origin is
again a rotation about the origin. Use the formula for rotations given in 15 for two angles α and
β. You’ll have to remember your addition/subtraction laws for sine and cosine from trig.

19. Symmetry groups of (regular) polygons. Let Pn ⊂ E
2 be a regular polygon with n sides. So

P3 is an equilateral triangle, P4 a square, P5 a regular pentagon, etc

The group of all rigid motions of E
2 which take Pn to itself is denoted by Symm(Pn) and also by

Dn and is called the dihedral group of order 2n. Note that Dn is a subgroup of Isom(E2).

Show that the elements of Dn must all fix the center O of Pn. Show that all the elements of Dn are
either rotations about O or reflections in lines through O. Show that Dn has precisely 2n elements:
n rotations and n reflections. By labeling the vertices of Dn with the integers 1, . . . , n find an
explicit map from Dn to a suitable subgroup of Perm({1, . . . , n}) in the cases n = 3, 4, 5.

In the case n = 4, use a labeling of the edges of P4 to find another copy of D4 inside of Perm({1, 2, 3, 4}).
20. Exercise. Think about how the above arguments would work for the space E

3 which is R
3 with

the distance function

d((x, y, z), (a, b, c)) =
√

(x − a)2 + (y − b)2 + (z − c)2

Think about the symmetries of a regular tetrahedron (pyramid with triangular base) or of a regular
cube.


