Q1] [12 points] Find a disjunctive normal form expression (involving \land, \lor, \neg, and P, Q, R) which has the following truth table. Show the steps of your work.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>$P\land Q\land R$</th>
<th>$P\land Q\land \neg R$</th>
<th>$\neg P\land Q\land R$</th>
<th>$\neg P\land Q\land \neg R$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Step 1: Find expressions whose truth tables give a T in the appropriate row & F's elsewhere. There are 4 expressions for this example.

Step 2: Take the disjunction of the expressions in step 1.

\[
\text{dnf} = (P\land Q\land R) \lor (P\land Q\land \neg R) \lor (\neg P\land Q\land R) \lor (\neg P\land Q\land \neg R)
\]

Find a conjunctive normal form expression (involving \land, \lor, \neg, and P, Q, R) which has the same truth table above. Show the steps of your work.

Step 1: Negate the output column

\[
\begin{array}{c|c|c|c}
 & F & F & T \\
\hline
P & T & T & T \\
Q & T & T & T \\
R & T & T & T \\
\hline
\end{array}
\]

Step 2: Write dnf for the new output column:

\[
(P\land Q\land \neg R) \lor (P\land Q\land \neg R) \lor (\neg P\land Q\land R) \lor (\neg P\land Q\land \neg R)
\]

Step 3: Negate this dnf ... use deMorgan ... get cnf for original table!

\[
(\neg P \lor \neg Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (P \lor Q \lor \neg R) \land (P \lor Q \lor R)
\]
Q2]...[11 points] Write down the distributive law for \(\land \) over \(\lor \).

\[
A \land (B \lor C) \equiv (A \land B) \lor (A \land C)
\]

Write down the distributive law for \(\lor \) over \(\land \).

\[
A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)
\]

Write down the two De Morgan laws (involving negations of \(\land \) and \(\lor \) statements).

\[
\neg(A \land B) \equiv \neg A \lor \neg B
\]

\[
\neg(A \lor B) \equiv \neg A \land \neg B
\]

Use the De Morgan and distributive laws to show that the expression

\[
[P \land (\neg Q) \land R] \lor [P \land (\neg Q) \land (\neg R)] \lor [P \land Q \land R] \lor \neg [(\neg P) \lor (\neg Q) \lor R]
\]

is logically equivalent to \(P \).

Expression \(\equiv \)

\[
(P \land \neg Q \land R) \lor (P \land \neg Q \land \neg R) \lor (P \land Q \land R) \lor (P \land Q \land \neg R)
\]

\(\equiv\) \(P \land \left[(\neg Q \land R) \lor (\neg Q \land \neg R) \right] \lor (Q \land R) \lor (Q \land \neg R) \)

\(\equiv\) \(P \land \left[(\neg Q \land (R \lor \neg R)) \lor (Q \land (R \lor \neg R)) \right] \)

\(\equiv\) \(P \land \left[(\neg Q \land \top) \lor (Q \land \top) \right] \)

\(\equiv\) \(P \land (\neg Q \lor Q) \)

\(\equiv\) \(P \land \top \)

\(\equiv\) \(P \quad \text{done!} \)
Q3]...[12 points] Are the following two expressions logically equivalent. If you say so, please explain why. If you say not, then please give an example which shows that they are different.

\[\forall x [P(x) \rightarrow Q(x)] \]

and

\[(\forall x P(x)) \rightarrow (\forall x Q(x)) \]

No
Example (in class!)
Universe = all integers
\[P(x) = x \text{ is even} \]
\[Q(x) = x \text{ is odd} \]

Statement 1 is **false** : e.g. \(2 \) is even, but not odd.
Statement 2 is automatically **true**, since the hypothesis "every integer is even" is false.

Same question for the expressions

\[\exists x [P(x) \lor Q(x)] \]

and

\[(\exists x P(x)) \lor (\exists x Q(x)) \]

Yes

1st \[\rightarrow \] 2nd

\[\exists x \text{ such that } P(x) \lor Q(x) \text{ true} \]

implies \(P(x) \text{ true } \) or \(Q(x) \text{ true for some value of } x \)

\[\Rightarrow \exists x P(x) \text{ or } \exists x Q(x) \]

2nd \[\rightarrow \] 1st

\[\exists x P(x) \lor \exists x Q(x) \]

\[\Rightarrow \exists x P(x) \]

\[\Rightarrow P(x) \text{ true} \]

\[\Rightarrow \exists x P(x) \lor Q(x) \text{ true} \]

\[\Rightarrow \exists x (P(x) \lor Q(x)) \]
Q4]...[15 points] Give a direct proof of the following. If \(m \) and \(n \) are odd integers, then their product is also odd.

\[
\begin{align*}
m \text{ odd } & \Rightarrow m = 2k+1 \quad \text{for some integer } k. \\
n \text{ odd } & \Rightarrow n = 2l+1 \quad \text{for some integer } l.
\end{align*}
\]

\[
\Rightarrow mn = (2k+1)(2l+1) = 4kl + 2k + 2l + 1
\]

\[= 2(2kl + k + l) + 1\]

which is of the form \(2(\text{integer}) + 1 \)

\[\Rightarrow \text{ is odd .} \]

Write down the contrapositive of the following statement about integers \(n \). If \(n^3 \) is even, then \(n \) is also even.

If \(n \) is odd, then \(n^3 \) is odd .

Prove the statement “If \(n^3 \) is even, then \(n \) is also even” by giving a proof of its contrapositive.

Start with \(n \) is odd

\[
\Rightarrow n^2 = n \cdot n = \text{product of 2 odd integers is odd (by 1st part above)}
\]

\[
\Rightarrow n^3 = n^2 \cdot n = \text{product of 2 odd integers is odd (by 1st part above)}
\]

\[\Rightarrow n^3 \text{ odd .} \]
Q5]...[15 points] Give a proof of the following: The cube root of 2 is irrational. You are free to cite the results of Q4 if they are of any help to you.

Proof by contradiction.

Assume \(\sqrt[3]{2} \) is rational.

Thus \(3\sqrt[3]{2} = \frac{p}{q} \) for \(p, q \in \mathbb{Z}^+ \).

By dividing numerator + denom by some power of 2, we may assume that at least one of \(p, q \) is odd.

\[
2 = \frac{p^3}{q^3}
\]

\[2q^3 = p^3 \]

LHS is even \(\Rightarrow \) \(p^3 \) is even
\[\Rightarrow p \text{ is even} \quad \text{by Q4}. \]

Writing \(p = 2k \) for some integer \(k \), we get

\[2q^3 = (2k)^3 = 8k^3\]
\[\Rightarrow q^3 = 4k^3\]

RHS is even \(\Rightarrow q^3 \) is even
\[\Rightarrow q \text{ is even} \quad \text{by Q4}. \]

So we have both \(p \) and \(q \) are even \(\Rightarrow \) contradicts \(\otimes \).

So \(3\sqrt[3]{2} \) must be irrational. \(\Box \)
Q6] [20 points] State the principle of induction.

\[P(n) = \text{statement involving } n. \]

- \(P(1) \) true
- \(\forall k \left[P(k) \implies P(k+1) \right] \implies P(n) \text{ true } \forall n \in \mathbb{Z}^+ \).

Give a proof by induction of the following. For each positive integer \(n \),

\[P(n) : \quad 1^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6} \]

Proof

1. **\(P(n) \) is true**:
 \[1^2 = 1 = \frac{1(1+1)(2(1)+1)}{6} = \frac{1(2)(3)}{6} = 1 \]
 \[1 = 1 \quad \checkmark \quad \text{true} \]

2. **\(\forall k \left[P(k) \implies P(k+1) \right] \)**:
 Assume \(P(k) \) true :
 \[1^2 + \ldots + k^2 = \frac{k(k+1)(2k+1)}{6} \]

 Then
 \[1^2 + \ldots + k^2 + (k+1)^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2 \]

 \[= \frac{k(k+1)(2k+1)}{6} + \frac{6(k+1)^2}{6} \]

 \[= \frac{(k+1) \left(k(2k+1) + 6(k+1) \right)}{6} \]

 \[= \frac{(k+1) \left(2k^2 + 7k + 6 \right)}{6} \]

 \[= \frac{(k+1)(k+2)(2k+3)}{6} \]
\[\frac{(k+1)(k+1)+1)}{6} \]

\& so \(P(k+1) \) holds.

By the principle of induction, \(P(n) \) true \(\forall n \in \mathbb{Z}^+ \).
Q7. [15 points] Give a proof by induction of the following. \(2^{2n-1} + 3^{2n-1}\) is a multiple of 5 for all integers \(n \geq 1\).

\[P(n) : \quad 2^{2n-1} + 3^{2n-1} \text{ is a multiple of 5} \]

\[P(1) \text{ true:} \quad 2^{2(1)-1} + 3^{2(1)-1} = 2^1 + 3^1 = 2 + 3 = 5 \quad \text{is a multiple of 5} \quad \text{...(5/1).} \]

\[\forall k (P(k) \Rightarrow P(k+1)) \]

Assume \(P(k)\) true.

\[2^{2k-1} + 3^{2k-1} = 5M \quad \text{for some integer } M. \]

Now \[2^{2(k+1)-1} + 3^{2(k+1)-1} \]

\[= 2^{2k-1} + 2 + 3^{2k-1} + 2 \]

\[= 2 \cdot 2^{2k-1} + 3 \cdot 3^{2k-1} \]

\[= 4 \cdot 2^{2k-1} + 9 \cdot 3^{2k-1} \quad \text{\(\text{\(\Rightarrow \)} \text{\(= 4 + 5 \) \(\text{by \(P(k) \) true.} \)} \text{\(\text{\(\Rightarrow \)} \text{\(\text{\(= (5M) + 5 \cdot 3^{2k-1} \quad \text{\(\Rightarrow \) by \(P(k) \) true.} \)} \text{\(\text{\(\Rightarrow \) \(P(k+1) \) true.} \)} \text{\(\text{\(= \text{multiple of 5.} \) \(\Rightarrow \) \(P(k+1) \) true.} \)} \text{\(\Rightarrow \) \(P(k+1) \) true.} \)

By induction, \(P(n) \) true for all \(n \in \mathbb{Z}^+ \).