Sp'04: MATH 1823-020	Calculus I	Dr. Noel Brady	
Friday 05/07/2004	Final Examination	10:30am-12:30pm	
Name:	Student ID:		

Instructions.

- 1. No calculators or notes.
- 2. Attempt all questions.
- 3. Do not write on back of exam sheets. Extra paper is available.
- 4. Show all the steps of your work clearly.

 The method (reasoning) used to obtain an answer is worth more than the answer itself.

Question	Points	Your Score
Q1	4	
Q2	8	
Q3	9	
Q4	9	
Q5	9	
Q6	18	
Q7	9	
Q8	9	
TOTAL	75	_

Q1]...[4 points] Compute the derivative $\frac{dy}{dx}$ of the following function.

$$y = \sqrt{x^2 + 1}$$

Q2]...[8 points] Show that the two curves $x^2 + 2y^2 = 2$ and $2x^2 - 2y^2 = 1$ intersect orthogonally (perpendicularly).

Q4]...[9 points] Find the maximum value of the curved surface area of a right circular cylinder which can be inscribed inside a right circular cone of base radius R and height H (as shown). You may recall that the curved surface area of a right circular cylinder with base radius x and height y is given by $2\pi xy$.

Q5]...[9 points] A beam of light from a lighthouse rotates at 2 radians/minute. The lighthouse is located 1 mile off shore as shown. How fast is the point of light moving along the shoreline when it is 2 miles from the closest point on the shore to the lighthouse? Give your answer in miles/minute.

Q6]...[18 points] Consider the function

$$f(x) = \frac{x}{x^2 + 1}$$

Compute the following.

1.	f'(x).	

2.
$$f''(x)$$
.

3. Intervals where
$$f$$
 is increasing.

4. Intervals where
$$f$$
 is decreasing.

5. Intervals where
$$f$$
 is concave up.

6. Intervals where
$$f$$
 is concave down.

11. Draw the graph of f(x) which displays all the information above. There is an extra page for this problem.

Extra space for Q6.

Q8]...[9 points] Use anti-differentiation to find f(x). You are given the following three pieces of information.

$$f''(x) = \cos(x) + 2$$
$$f'(0) = 0$$
$$f(0) = 0$$