
MATH 2443-004 EXTRA HOMEWORK II FALL 2003
Weird and wonderful applications of double integrals.

Problem 1. Call a rectangle in the euclidean plane good if at least one of its length or width
is a rational number. For example, the 2× π and 3/4× 7/9 rectangles are both good, while
a
√

2 × e rectangle is not good. Suppose you are given a big rectangle R, and you are told
that it is somehow tiled by a finite number of good rectangles. Prove that R is also good.

Note that this tiling can have a small 2 × π rectangle (good in the horizontal direction)
adjacent to a

√
2 × 4/5 rectangle (which is good in the vertical direction). You have to

somehow conclude that, since everything fits together in a nice finite tiling, the sum of
horizontal lengths

· · ·+ 2 +
√

2 + · · ·
is rational, or that the sum of vertical lengths

· · ·+ π + · · ·
is rational (or possibly that both are rational).

Problem 2. Prove the following result that we saw in Calc III.
∞∑

n=1

1

n2
=

π2
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Ideas for problem 1.

(1) Call a rectangle really good if one of its lengths is an integer. Given our big rectangle
R tiled by finitely many small good rectangles, we can take L to be the least common
multiple of the denominators of all the rational lengths of the small good rectangles.
Scale everything by L, so now we get a huge rectangle, H, which is tiled by really
good rectangles. We’ll argue that this huge rectangle is also really good (and hence
we can conclude that R is good — why?).

(2) Consider the function f(x, y) = sin( x
2π

) sin( y
2π

). What is the value of∫∫
f(x, y) dA

over a really good rectangle? Why?
(3) What is value of the double integral of f over H? Why?
(4) Place H so that its bottom left corner is at the origin, so it has two other corners at

(A, 0) and (0, B) say. What can you conclude about A or B? Why?
(5) Why did we have to be careful about the placement of the bottom left corner of H?

What other points would work? What would be a bad placement for H?

Ideas for problem 2. This is basically an evaluation of the double integral of f(x, y) = 1
1−xy

over the unit square [0, 1]× [0, 1] in two different ways.

(1) First method. Use the geometric series

1

1− r
= 1 + r + r2 + r3 + · · ·

to write out the integrand above as a series in x and y, and then integrate this series
term by term, first with respect to x and then with respect to y. You can just do
this formally if you like. However, if you have issues with the fact that the integral is
not proper (f(1, 1) is not defined), and/or that a geometric series only makes sense
for |r| < 1, then you should work all this for the rectangle [0, 1]× [0, a] for a < 1, and
then consider what happens as a → 1.

(2) Second Method. (Rotate coordinates by π/4!) Use the substitution

x =
u− v√

2
, y =

u + v√
2

(3) Show that xy = (u2−v2)
2

, and that 1− xy = (2−u2+v2)
2

(4) Show that the integral becomes the sum of two integrals

4

∫ √
2/2

0

∫ u

0

1

2− u2 + v2
dv du + 4

∫ √
2

√
2/2

∫ √
2−u

0

1

2− u2 + v2
dv du

(5) The v-integrals will give you inverse tangents. To do the resulting horrible u-integrals,
make the substitution u =

√
2 sin θ, so that

√
2− u2 =

√
2 cos θ and du =

√
2 cos θdθ.

Have fun.


