MATH 1823 Honors Calculus I
Permutations, Selections, the Binomial Theorem

Permutations. The number of ways of arranging (permuting) n objects is denoted by n! and is
called n factorial. In forming a particular arrangement (or permutation) we have n choices for the
first object. Given a particular choice for the first object, we have (n—1) choices for the second, and
so on. Eventually we have n(n —1)(n—2)...(3)(2)(1) possible choices in forming an arrangement.
Thus there are n(n — 1)(n —2)...(3)(2)(1) possible arrangements of n objects.

nl = n(n—1)(n-2)...3)2)Q1)

Note that 1! = 1. It is an accepted convention to define 0! = 1.
For example, there are 2! = 2 arrangements of the letters a, b. Here they are: ab, and ba. There
are 3! = 6 arrangements of the three letters a, b, c. They are: abc, acbh, bac, beca, cab and cba.

Q1]... Write out all the arrangements of the 4 letters a, b, ¢, and d. How many are there?

There are 4! = 24 of them. Here they are:
abed, abdce, acbd, acdb, adbc, adch, bacd, badc, bead, beda, bdac, bdca, cabd, cadb, cbad, cbda, cdab,
cdba, dabe, dacb, dbac, dbca, dcab, dcba

Q2]... Write down the following numbers (use a calculator to help you) 5!, 6!, 7!, 8!, 9! and 10!.
5!'=120, 6! = 720, 7! = 5040, 8! = 40320, 9! = 362880, 10! = 3628800.

As you have guessed from the last exercise above, the factorials grow extremely rapidly. There is
a pretty result, due to a dead guy called Stirling, which says that

n n
n! grows like 2mn (E)
This remarkable growth has surprising practical implications. Some of these implications are the
reason why some companies invest huge financial resources in developing fast algorithms which
give reasonably accurate results rather than focusing on algorithms which give the best possible
results, but at huge costs in computing time.

Take the traveling salesman problem for instance. The problem here is one of optimization
(actually minimizing travel costs). Suppose a company has to send a salesman to visit n different
cities in the mid-western and western U.S. Which order should the salesman visit the cities in order
to minimize the total travel costs/time? The answer seems to be very simple: you are told by
a travel agent the costs of traveling between all possible pairs of cities. Now you simply list all
possible routes and compute their total round-trip costs, and then select the round-trips with the
lowest costs. This clearly gives the best possible results, but what about the computing time? You
think about this for a second: there are n choices for the first city, then (n — 1) choices for the
second, etc.

Q3]... How many total round trips are there?
There are a total of n! round trips.

So you decide to program a computer to list all the possible round-trips, and to do all the additions
quickly to get totals for each round trip. Suppose the computer can compute 1000 round trip totals
per second.



Q4]... How long will it take it to deal with 20 cities?
How long will it take it to deal with 25 cities?

It will take 20!/(1000)(60)(60)(24)(365.25) years (the 365.25 term accounts for leap years) to deal
with 20 cities. This is a total of 77,094,012.48 years.

It will take 25!/(1000)(60)(60)(24)(365.25) years to deal with 25 cities. This is a total of
49,152,058,594,920 years, or about the time it takes to determine the outcome a presidential election!



Selections. The number of ways of selecting (or choosing) a group of r objects (for example a
committee) from a group of n objects is denoted by (7)) which is read n choose r.

How do we find a formula for (?)7 Well, first look at all the possible ordered lists of r objects
that can be selected from n objects. There are n choices for the first member of the list. Given
that choice, there are now (n — 1) choices for the second member of the list, and so on. Thus there
is a total of

nn—1)...(n —r+1)
possible ordered lists of r things that can be selected from a group of n things. Now, these lists can
be combined into groups of size r!, where all the lists in a particular group are just arrangements

of a given selection of r things from the original group of n. Thus, the total number of choices of
r things from the original group of n things is given by

nn—1)...(n —r+1)
rl

We can tidy this up by multiplying above and below by (n —r)...(2)(1) to get

n n!
(7’) - ri(n —r)!

We take this as a definition of (:f) even if r = 0. We remember to use the convention that 0! = 1.

Q5]... Do this analysis explicitly to determine the number of selections of 3 things from the group
of five letters a, b, ¢, d and e. That is, write down all the ordered lists of size three which can be
obtained from these 5 letters (no repetitions within a given list of course!). Then group your lists
together if they involve the same three letters. How big is each group? How many groups of lists
do you have?

There are 10 groups each containing 6 lists. This is a total of 60 = (5)(4)(3). Here they are

abc abd abe acd ace ade bed bee bde cde
acb adb aeb adc aec aed bdc bec bed ced
bac bad bae cad cae dae cbd cbe deb dec
bca bda bea cda cea dea cdb ceb dbe dce
cab dab eab dac eac ead dbc ebc ebd ecd
cba dba eba dca eca eda dcb ecb edb edc

QG]... Compute the following mumbers: (g), (o), (1), (6): (), ). (), (D). ), (). (0)s (D, G,
(g), (3). Put your answers down in rows, labeled by the upper number 0, 1, 2, 3, and 4. Do you

recognize the result? What is it?

The result is Pascal’s triangle. Here it is.



Q7]... Prove that () = (,",). Give an intuitive interpretation of this fact.

n—r

n n! n! n
<n—r> a (n—r)l(n—(n—r))! - (n—r)lr! - <r>

and we’re done! This result should be intuitively true, since every time you make a selection of r
things from a group of n things, you automatically make a selection of n — r things (the remaining
or complementary things). Distinct selections have distinct complements. Thus, the number of
ways of selecting r things is the same as the number of ways of their n — r complements.

We have

Q8]... Show that () and (]!) are always equal to 1. Now, we will get the rows of Pascal’s triangle,
provided we can prove that the (') add together to give other (7) just like in Pascal’s triangle.

Prove that
n n n+1
+ =
r r+1 r+1
Finally, Q7] above now confirms our observation of the symmetry in the rows of Pascal’s triangle.

Wehave(g): n! :”!—1andso(”):("):(’8):1‘500.

0!(n—0)! n! — n n—n

Now for the addition formula

n n n! n!
(7‘) + <r—i—1> " =) * (r+ 1)l n—(r+1))

n! n!
- ri(n —r)! T (r+ Dl (n—r—1)!
_ n!(r+1) nl(n—r)
rlr+D(n—r)!  (r+D(n—r—11(n—-r)
n!(r+1) nl(n—r)

D= " rx D=1
nl(r+1)+nl(n—r)

(r+ 1Dl (n—r)!
nl(r+1+n-—r)
(r+1)l(n—r)!

nl(n+1)
(r+ 1Dl (n—r)!

(n+1)!

(r+D((n+1)—(r+1))!

_ [n+1
N r+1
This also has an intuitive interpretation. Here it is. Suppose you want to select a committee of
r 41 people from a roomful of n+ 1 people. We know that the total number of possible committees
o (ntl
18 (:"L+1)'
You might like to know how many of those committees contain a particular person (let’s call
him Paddy!) in the room. Well we can create a committee of r + 1 people which contains Paddy,

by simply choosing Paddy, and then choosing r other people from the remaining n people in the




room. There is a total of (') ways of doing this. Thus there are () committees of r + 1 people
which contain Paddy.

What about the Paddy-free committees. Well you simply create these by telling Paddy to leave
the room, and then choosing the full committee of » + 1 from the remaining n people. There are

obviously (,%,) ways of doing this. Thus there are (,",) Paddy-free committees of r + 1 people.
n+1

r-l—l) must be the sum

Now a given committee either contains Paddy or is Paddy-free. Thus, (

of () and (Tj_l). Done!



Binomial Theorem. This theorem tells you that the (:f) are precisely the coefficients of """ in
the expansion of (a + b)". Using the summation notation developed in class (ask me if you missed
this!) it says
n n . .
by =3 ( s
J

J=0

We wont give a boring proof as is the usual case at this stage, but instead will focus on an intuitive
understanding.
Our expression consists of a product of n bracketed terms as shown:

(a+b)(a+b)(a+Db)---(a+D)

Note that the term a™ appears by taking an a out of each bracketed term and multiplying them
together. We get a ab”~! by taking an a out of the first bracketed term and b’s out of all the
remaining bracketed terms. We get another ab”~! by taking the a from the second bracketed term
and b’s from the others: it appears as bab...b.

Q9]... How many terms (product of length n consisting of a’s and b’s in some order) are there
altogether?
How many of these give rise to an ab® '? List these explicitly.

There are 2" binary words (that’s strings to you computer science majors!) of length n. We see this
by noting that to create such a word, we have two choices for the first letter, two for the second,
and so on.

Of these exactly (Tf) = n give rise to the term ab”~!. Here they are written out explicitly:

abbb ... bb
babb . ..bb
bbab . .. bb
bbb . .. ba

The (711) comes from the fact that we have to choose one slot from n in which to place the a and
fill the remaining slots with b’s.

Q10]... How many terms give rise to an a"b"~"? Remember, we have to choose r bracketed
expressions from among the list of n bracketed expressions from which to take a’s, and then we
take b’s from the remaining (n — r) bracketed expressions. Hmmmmm....this choosing reminds me
of something....

We have to choose r places from the n possible positions (in a word of length n) in which to put
the a’s and fill the remainder with b’s. There are (') ways of doing this. Thus, the coefficient of
a"d""" is (). This can also be written as (,,”) if we prefer.

Q11]... Prove that the sum of all the entries in the n-th row of Pascal’s triangle is 2". Hint, let
a =b =1 in the Binomial theorem.

The Binomial Theorem says

(a+b)" = z”: (?) alb" I

Jj=0



Setting a = 1 = b gives

or



