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Thek—dimensional Dehn (or isoperimetric) function of a group bounds the volume
of efficient ball-fillings of k—spheres mapped intoe-connected spaces on which
the group acts properly and cocompactly; the bound is given as a function of the
volume of the sphere. We advance significantly the observed range of behavior for
such functions. First, to each non-negative integer mé&rand positive rational
numberr , we associate afinite, aspherical 2—complex and determine the Dehn
function of its fundamental grouf®, p in terms ofr and the Perron—Frobenius
eigenvalue ofP. The range of functions obtained includé&) = X, where

s € QN [2,00) is arbitrary. Next, special features of the groupsp allow us

to construct iterated multiple HNN extensions which exhibit similar isoperimetric
behavior in higher dimensions. In particular, for each positive intdgand
rational s > (k + 1)/k, there exists a group witk—dimensional Dehn function

x®. Similar isoperimetric inequalities are obtained for fillings modeled on arbitrary
manifold pairs ¥, M) in addition to g1, ).

20F65; 20F69, 20E06, 57M07, 57M20, 53C99

Introduction

Given ak—connected complex or manifold one wants to identify functions that bound
the volume of efficient ball-fillings for spheres mapped into that space. The purpose of
this article is to advance the understanding of which functions can arise when one seeks
optimal bounds in the universal cover of a compact space. Despite the geometric nature
of both the problem and its solutions, our initial impetus for studying isoperimetric
problems comes from algebra, more specificallywioed problemfor groups.

The quest to understand the complexity of word problems has been at the heart of
combinatorial group theory since its inception. When one attacks the word problem
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for a finitely presented grouf directly, the most natural measure of complexity is
the Dehn functionj(x) which bounds the number of defining relations that one must
apply to a wordw =¢ 1 to reduce it to the empty word; the bound is a function of
word-length|w|. The functiond(x) recursive if and only ifG has a solvable word
problem.

Progress in the last ten years has led to a fairly complete understanding of which
functions arise as Dehn functions of finitely presented groups. The most comprehensive
information comes froml[8] where, modulo issues associated tofhe NP question,
Birget, Rips and Sapir essentially provide a characterisation of the Dehn functions
greater tharnx*. In particular they show that the followirigoperimetric spectrunis

dense in the range [40).

IP = {a €[1,00) | f(X) = x* is equivalent to a Dehn functign

Gromov proved that 1Y (1,2) is empty and that word hyperbolic groups can be
characterised as those which have linear Dehn functions3]IBrady and Bridson
completed the understanding of tbearsestructure of IP by providing a dense set of
exponents in IR [2, 00). What remains unknown is the fine structure of 12, 4).

In particular, it has remained unknown whetlign (2, 4) C IP. There has, however,
been recent progress on understanding Dehn functions bélawat are not of the
form x. For instance, Gkhanskii and Sapirle] have constructed groups with Dehn
function x?log(x), and Ol shanskii [L5] has constructed examples with more exotic,
almost-quadratic behavior.

What Brady and Bridson actually do i8][is associate to each pair of positive integers

p > q afinite aspherical 2—complex whose fundamental gi@Gpip has Dehn function
x2°%2p/4 These complexes are obtained by attaching a pair of annuli to a torus, the
attaching maps being chosen so as to ensure the existence of a family of discs in the
universal cover that display a certanowflake geometrfef Figure 4below). In the
present article we present a more sophisticated version of the snowflake construction
that yields a much larger class of isoperimetric exponents.

Theorem A Let P be an irreducible non-negative integer matrix with Perron—Frobenius
eigenvalue A > 1, and let r be a rational number greater than every row sum of P.
Then there is a finitely presented group Gy p with Dehn function §(X) ~ x2'°%(®)

Here, ~ denotes coarse Lipschitz equivalence of functions. By talnig be the
1 x 1 matrix (29) andr = 2P (for integersp > 2q) we obtain the Dehn function
5(x) ~ xP/9 and deduce the following corollary.
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Corollary B QN (2,00) C IP.

The influential work of M. Gromov 11], [12] embedded the word problem in the
broader context of filling problems for Riemannian manifolds and combinatorial com-
plexes. For example, Gromov’s Filling Theorers [tates that given a compact
Riemannian manifoldV, the smallest function bounding the area of least-area discs
in M as a function of their boundary length is coarsely Lipschitz equivalent to the
Dehn function ofriM. In the geometric context, it is natural to extend questions
about the size of optimal fillings to higher-dimensional spheres, exploring higher-
dimensional isoperimetric functions that bound the volume of optimal ball-fillings
of spheres mapped into the manifold (or complex). Correspondingly, one defines
higher-dimensional Dehn functio&)(x) for finitely presented group8 that have a
classifying space with a compad ¢ 1)—skeleton (se€ection 3. The equivalence
class of6® is a quasi-isometry invariant @, by Alonso—Wang—PrideZ].

In contrast to the situation of ordinary Dehn functions, Papasabiyijas shown

that 6@(x) is always bounded by a recursive function. This is not the case in higher
dimensions, however. For eakh> 2, Young R3] constructs a group for which®(x)

is not subrecursive.

For each positive integde one has th&k—dimensional isoperimetric spectrum
PR = {o € [1,00) | f(X) = x* is equivalent to &—dimensional Dehn functign

We do not yet have as detailed a knowledge of the structure of these sets as we do
of IP = IPD. Indeed knowledge until now has been remarkably sparse even for
IP@): the results of Alonset al [1], Wang and PrideZ2], and Wang 1] provide

infinite sets of exponents in the range/232) and provide evidence for the existence

of exponents in the range [&); the snowflake construction of Brady and Bridsah [
provides a dense set of exponents in the interva2[3); and in Bridson ] it is was

proved that 23 € IP) (see also Burillo§]). Gromov and others have investigated

the isoperimetric behavior of lattice$7].

Our second theorem relieves the dearth of knowledge about the coarse structure of
PR, k> 2.

Theorem C Let P be an irreducible non-negative integer matrix with Perron—Frobenius
eigenvalue A > 1, and let r be an integer greater than every row sum of P. Then for
every K > 2 there is a group Ek_lGrvp of type Fi+1 with K—dimensional Dehn function
SM(x) ~ x2190(") " There are also groups X172 of type Fiy1 with K—dimensional
Dehn function 6®(x) ~ x2.
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By taking P to be the 1x 1 matrix (29) andr = 2P we see thaQ N[2, o0) C IP®: in
particular I is dense in the range [20). But that falls short of one’s expectations:

as in the cas& = 1, one anticipates that #® should be dense in the range that begins
with the exponentl+ 1)/k corresponding to the isoperimetric inequality for spheres
in Euclidean space. In order to fulfil this expectation, we investigate the higher Dehn
functions of product$s x Z and prove the following theorem.

Theorem D If P, A and r are as in Theorem C, then for all q,¢/ € N, the (q + £)-

dimensional Dehn function of ¥9~1G; p x Z* is equivalent to X°, where S = %r_l();_]g

and o = 2log,(r). The (q + £)—-dimensional Dehn function of X9717? x 7! is

: S _ 042
equivalent to X°, where s = 75

By holding g and/ fixed and varying andP, one obtains a dense set of exponents
in the interval %, %] including all rationals in this range. By varyirggand/ with

k = g+ ¢ and taking account ofheorem Cwe deduce the following result, shown
pictorially in Figure 1

Corollary E- Q N[(k+ 1)/k, c0) C IPW).
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Figure 1: Isoperimetric exponents Bf~1G, p x Z. Colors correspond to fixed values @f

The main aim of Brady and Bridson’s initial construction of snowflake gro@pa@s

to prove that the closure of {P is {1} U [2, o0). Corollary Eimplies that the closure

of IP® contains{1} U [(k+ 1)/k, c0). Building on this result, Brady and Foresté} |

have recently shown that the closure ofifs in fact equal to [1oo) for k > 2. Other
examples, known earlier, include solvable and nilpotent groups whose two-dimensional
Dehn functions appear to bdogx andx*/® respectively, by Wang21] and Coulhon—
Saloff-Coste 9] (the latter was pointed out to us by Robert Young). It should be noted,
however, that in both cases the upper bound is derived using the Sobolev inequality
from Varopoulos—Saloff-Coste—Coulho®(]. The resulting isoperimetric inequality
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concerns embedded fillings only, which do agiriori suffice for our definitions (which
allow singular maps and fillings).

This article is organised as follows. In Section 1 we outline the construction of the
snowflake group&, p and their HNN extensionsG; p, deferring a detailed account

to Sections 4 and 6. In Section 2 we define the class of maps with which we shall
be working and record some pertinent properties; we also recall those elements of
Perron—Frobenius theory that we require. The gra@ps are fundamental groups of
graphs of groups; in Section 3 we analyze the geometry of the vertex groups in these
decompositions. The snowflake geometry@fp is described in Section 4 and this

is analyzed in further detail in Section 5 to proVeeorem A In Section 6 we turn

our attention to higher Dehn functions and establish the lower bounds required for
Theorem Cby analyzing the geometry of an explicit sequence of embedkledl()—

balls in the universal cover of & (- 1)—dimensional classifying space kG, p.

In Section 7 we establish the complementary upper bounds. The proof proceeds
by induction, slicing balls into slabs based of lower-dimensional fillings. A lack of
control on the topology of these slabs obliges one to prove a stronger result: instead of
establishing bounds only on the behavior of ball-fillings for spheres, one must establish
isoperimetric inequalities for all pairs of compact manifolt(-), M) mapping to

the space in question. In Section 8 we analyze the isoperimetric behaviour of products
G x Z and complete the proof dtheorem D
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1 An outline of the basic construction

The groupsG; p we consider are fundamental groups of graphs of groups whose
underlying graphs are determined by a non-negative integer matrixThe edge
groups are infinite cyclic, with attaching maps determined by a rational humber
The vertex groupd/y, have many properties in common with free abelian groups of
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rank m. Indeed, for the purposes of this summary, the reader may\fagke- Z™
(cf Remark 1.). There is a distinguished elemeate Vy,, corresponding to the
diagonal element (the product of the standard generato&YinThe precise definition
of Vp is given inSection 3

The key geometric idea behiftheorem Ais that efficient van Kampen diagrams for

the groupsG; p exhibit thesnowflake geometijlustrated inFigure 4 The essential
features of such diagrams are these: the diagram is composed of polygonal subdiagrams
joined across strips so that the dual to the decomposition is &traad each of the
polygonal subdiagrams is a van Kampen diagram in one of the vertex ghMyps
(typically it is an (m+ 1)—gon with a base labeled by a power of the distinguished

¢ € Vi, andm other sides labeled by powers of threstandard generators df;).

The most important class of diagrams are those that are as symmetric as possible,
having the property that as one moves from the circumcenter of the dual tree to the
boundary of the diagram, the joining strips are all oriented in such a way that the length
of the side stripdecrease$y a factor ofr as one journeys towards the boundary. The
labels on the outer sides of the strips are powers of the diagonal elements in various
vertex groups/m, and a crucial feature of our construction is that the cyclic subgroups
(c) C Gy p are distorted in a precisely understood manner, with distortion funtiafi
wherea = log,(r) and X is the Perron—Frobenius eigenvalueRof This distortion is
determined through the analysis of certain paths, caltemvflake pathswvhich play

the role of quasi-geodesics & p. These snowflake paths are the result of a curve
shortening process; the dynamics of this process are at the heart of our calculations and
this is where the Perron—Frobenius theory enters -Sgeéon 4

Ifthe treeT has radiugl, then arguing by induction ot in a suitable class of diagrams,

one calculates the length of the boundary tobe/* if the central polygon has base

~ d¥. One has a precise understanding of the quadratic Dehn functions of the vertex
groupsVp, and this leads to an area estimate~oti®® on these diagrams of diameter

~ d¥. Thus we obtain a family of diagrams with aread® and perimeter d</«,

and an elementary manipulation of logs provides the required lower bouxfcPef(")

for the Dehn function ofG; p. The complementary upper bound is established in
Section 5

A key feature in our construction d, p is that whenr is an integer, the snowflake
diagrams admit a precise scaling by a factor pinduced by a monomorphism. The
ascending HNN extensio®; , of G;p corresponding to this monomorphism is a
group in which one castackscaled snowflake diagrams (Séigure §. By putting
together two such stacks (using two stable letters) one obtaingvaflake ballhaving
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the same proportions as its equatorial snowflake disk. That is, the interior volume and
surface area of the ball are comparable to the area and boundary length, respectively,
of the equatorial disk. In this way, one discovers the higher dimensional isoperimetric
behavior of the multiple HNN extensioRG, p which is obtained by amalgamating

two copies ofG; p alongG; p.

The snowflake balls just described determine a lower bound for the 2—dimensional
Dehn function mentioned ifheorem G upper bounds in this case can be deduced by
using Wang—PrideZ2]. To proceed in higher dimensions we iterate the suspension
procedure described above. Lower bounds can be determined as before. However, in
dimensions greater than 2, upper bounds require new techniques. In particular, we
need to consider isoperimetric inequalities for compact manifdllM) other than

(B¥, 1). Using this perspective, we establish general upper bounds for ascending
HNN extensions. Thisis achievediimeorem 7.2nd is further refined imheorem 8.1

Remark 1.1 The actual vertex groupéy, of G; p are themselves fundamental groups

of graphs of groups with vertex grouf® and edge group&. It turns out that this
structure is compatible with the larg&; p graph of groups structure. That i&; p

itself may be viewed as the fundamental group of an aspherical 2—complex assembled
from a finite collection of tori and annuli. With respect to a fixed framing on the tori,
the attaching maps of the annuli are all powers of the sldd¢6, 0/1, 1/1}. From

this perspective, it is perhaps surprising that one can encode the range of isoperimetric
exponents stated ihheorem A

An explicit example

We conclude this outine with an explicit example illustratirigeorem A The example
that we present here has Dehn functidhd, wherep > 2q are positive integers
(common factors are allowed).

Let P be the 1x 1 matrix with entry 29 = 49 and letr = 2°. Then G p is the
fundamental group of a graph of grou@swith one vertex group and¥4nfinite cyclic
edge groups. The single vertex grovp is the fundamental group of a tree of groups
that we shall describe in a moment,s has generatoray, . .., a4q; the product of
these generators= a; - - - a41 plays a special role.

Theith edge group o has two monomorphisms to the vertex grodya. One maps
the generator t@ and the other maps the generatoraf& Thus we have a relative
presentation

Gpq = Grp = (Vas,8,....80 g lafs =c (i=1,....49).
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It remains to elucidate the structure of the grod. This is the fundamental group
of a tree of groups in which each of the vertex groups is isomorph#tand each of
the edge groups is infinite cyclic. The underlying tree is a segment With2ledges
and 4 — 1 vertices. A basiga;, b;} is fixed for each vertex group, and the generator
of each edge group maps to the generatoof the left-hand vertex group, and to the
diagonal element;a1b; 1 of the right-hand vertex group.

The generatorsy, ..., aq mentioned above are the generatarsof these vertex
groups together witlags = bga_1. The distinguished elemestis the diagonak;b;
of the leftmost vertex grouf? (seeFigure 4a)).

Theorem Atells us that the Dehn function @, is x* wherea = 21og,, 2° = p/q.
Consider, for example, the groug;, with Dehn functionx®2. In this case, the tree
described above is a segment of length 14 and the above descriptin yitlds the
presentation

<ala blvaZa b27 o 7a157 b15 | [ah bl] (I = la ey 15)7 bi - ai+1bi+1 (I = 1, ceey 14)>

Eliminating the superfluous generatdrs. . . , bi4 and relabellindd; s asayg, as in the
description ofV4 above, we get

Vie = (@1,...,a16| 0 € C16)
where(Cys is the following set of commutators:
[a1,82- - auel, [A2,83 - aug], -, [a14, 2as2u6], [A15, Q6.
Thus we obtain the explicit presentation
Gsj2 = (&1,...,6,51,...,56 | C16; S "&°s = ar---awe (i = 1,...,16)).

We have just described a 32—-generator, 31-relator presentati@g,of The corre-
sponding presentation @, 4 has 24+1 generators and?2t! — 1 relations.

2 Preliminaries

In the first part of this section we recall the basic definitions associated to Dehn
functions. We then gather those elements of Perron—Frobenius theory that will be
needed in the sequel.
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Dehn functions

Given a finitely presented group = (A | R) and a wordw in the generatorsd*!
that represents & G, one defines

N
Areafy) = min{N € N | 3 equalityw = [ [ urju~* freely, wherer; € R*'} .
-1

TheDehn functionj(x) of the finite presentation4 | R) is defined by
0(x) = max{Areafw) | w € ker(F(A) — G), |w| < x}

where |w| denotes the length of the womd. It is straightforward to show that the
Dehn functions of any two finite presentations of the same group are equivalent in the
following sense (and modulo this equivalence relation it therefore makes sense to talk
of “the” Dehn function of a finitely presented group).

Given two functions, g: [0, c0) — [0, c0) we definef < g if there exists a positive
constantC such that
f(x) < Cg(Cx) + Cx

forall x > 0. If f < gandg < f thenf and g are said to beequivalent denoted
f~gqg.

Remark 2.1 Inorderto establishtherelatidns g between non-decreasing functions,
it suffices to consider relatively sparse sequences of integers. Rgrig &n unbounded
sequence of integers for which there is a cons@nt- 0 such thatng = 0 and
N1 < Cny for all i, and if f(n) < g(ny) for all i, thenf < g. Indeed, given
X € [0, 00) there is an index such thatn; < X < njy1, whencef(x) < f(niy1) <
g(ni+1) < 9(Cn) < 9g(Cx).

We refer to Bridson §] for general facts about Dehn functions, in particular the
interpretation of Areaf) in terms ofvan Kampen diagramever (A4 | R). Recall
that a van Kampen diagram fer is a labeled, contractible, planar 2—complex with a
basepoint and boundary label Associated to such a diagrabh one has a cellular
map D from D to the universal coveK of the standard 2—complex df4 | R),
respecting labels and basepoint. The diagram is said entigeddedf this map in
injective.

Remark 2.2 Ifthe presentatiof.A | R) is aspherical and the diagrainis embedded,
then D has the smallest area among all diagrams with the same boundary label. To
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see this, note that i is a diagram with the same boundary circuittasthenD — A
defines a 2—cycle ik, which must be zero sinck,(K;Z) = 0 and there are no
3—cells. Thus each 2—cell in the imagefdfmust also occur in the image d. And
sinceD is an embedding, the number of 2—cells in the image (hence domaﬂn)isf
at least AredD).

Higher-dimensional Dehn functions

Our treatment of higher-dimensional Dehn (isoperimetric) functions is similar to that
of Bridson [6], which is an interpretation of the more algebraic treatment of Ala@iso

al [2]. See Section 5 ofg] for an explanation of the differences with the approaches
of other authors, in particular Gromo%4], Epsteinet al[10], and Hatcher—\Vogtmann
[13].

The k—dimensional Dehn function is a functioi®¥: N — N defined for any group

G that is of typeFky1 (that is, has & (G, 1) with finite (k + 1)—skeleton). Up to
equivalencey®(x) is a quasi-isometry invariant. Roughly speakinf)(x) measures

the number of K + 1)—cells that one needs in order to fill any singutaisphere in

K(G, 1) comprised of at most k—cells. The reader who is happy with this description

can skip the technicalities in the remainder of this subsection. However, to be precise
one has to be careful about the classes of maps that one considers and the way in which
one counts cells. To this end, we make the following definitions.

If W is a compack—dimensional manifold an{ a CW complex, amdmissible map
is a continuous map: W — X® < X such thatf ~1(X® — Xk=1) is a disjoint union
of openk—dimensional balls, each mapped byhomeomorphically onto &—cell of
X.

If f: W — X is admissible we define theolumeof f, denoted Vdi(f), to be the
number of operk—balls inW mapping tok—cells of X. This notion is useful because
of the abundance of admissible maps:

Lemma 2.3 Let W be a compact manifold (smooth or piecewise-linear) of dimension
k and let X be a CW complex. Then every continuous map f: W — X is homotopic
to an admissible map. If f(OW) C X&) then the homotopy may be taken rel OW.

Proof We prove the lemma in the smooth case; analogous methods apply in the
piecewise-linear category (cf the transversality theorem of Buoncristiano—Rourke—
SandersonT]).
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Firstarrange that(W) c X® using cellular approximation. Next consicéd) —xk-1)

as a smooth manifold and pertuirlio be smooth on the preimage of this open set. Let
C c XX pe a set consisting of one point in the interior of eliekell of X. By Sard’s
theorem we can choose each poin€ao be a regular value df. The preimagé —1(C)

is now a codimensiok submanifold ofW (ie a finite set of points) anél is a local
diffeomorphism at each of these points, by the inverse function theorem. Thus there
is a neighborhood/ of C consisting of a small open ball around each point, whose
preimage inW is a disjoint union of open balls, each mapping diffeomorphically to
a component ofV. Now modify f by composing it with a map oK (homotopic to

the identity) that stretches each componenYoécross thek—cell containing it, and
pushes its complement ind* 1. The resulting map is admissible. o

Given a groupG of type Fy+1, fix an aspherical CW compleX with fundamental
groupG and finite k+ 1)—skeleton. LeK be the universal cover of. If f: & — X
is an admissible map, define tfiting volumeof f to be the minimal volume of an
extension off to B<t1:

FVol(f) = min{Vol*"}(g) | g: B"' — X, glpgers = f 1.

Note that the mapg must be admissible for volume to be defined. Such extensions
exist byLemma 2.3 sincemy(X) is trivial. Next we define th&k—dimensional Dehn
functionof X to be

M) = sup{ FVol(f) | f: S — X, VoI(f) < x}.

Again, the mapg are assumed to be admissible. We will also wiité(x) as 5g‘)(x)
(recall thatG is the fundamental group of).

Remarks 2.4 (1) In these definitions one could equally well u&ein place of X,
since mapsst — X (or Bt — X) and their lifts toX have the same volume. There
are reasons to prefét, however, as we shall see in the next definition below.

(2) It is not difficult to show that the Dehn functio&‘g)(x) agrees with the notion
defined by Alonscet al in [2]. A discussion along these lines is given in Bridson
[6, Section 5]. Moreover it is proved ir2] that, up to equivalencezig‘)(x) depends
only on G (and in fact is a quasi-isometry invariant); hence we refer to it as “the”
k—dimensional Dehn function db. It is also proved in2] that the supremum in the
definition of 5&(x) is attained.
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More general Dehn functions

The definition ofs®(x) generalizes in a natural way to give Dehn functions modeled on
manifolds other thaB**1. For example, Gromov has defingenus g filling invariants
based on surfaces other than the disl.[ Here we need to consider arbitrary compact
manifolds.

Let (M, OM) be a compact manifold pair (smooth or piecewise-linear) with Mim:
k+1.If f: OM — X is an admissible map define

(2.5) FVolM(f) = min{Vol**}(g) | g: M — X, glam =f }

and
M) = sup{ FVolM(f) | f: oM — X, VoIX(f) < x}.

Thedimensiorof 6M(x) is k, the dimension 0OM (whendM # 0). In general we do
not assume tha¥l is connected or tha®M # (). Note that ifM is closed ther™(x)

is identically zero, sincé may be mapped to a point, of zero volume. We will also
use the notation (x) for 6M(x).

Remarks 2.6 (1) In the definition of6™(x) it is important that we use maps in6,
which is contractible, since mags OM — X need not have extensions kb. Note
that if (M, OM) = (Bt1, &) then the definitions o™ (x) and §®(x) agree.

(2) The omission oiX from the notation and the adoption of the alternative notation
5'(\3"(x) suggest an implicit claim that, as in the cadde= B¥t1, the equivalence class

of M(x) depends only ors. We shall address this issue elsewhere, as it would take
us too far afield in the context of the current paper. The structure of the arguments in
Sections 7 and 8 requires us to work with specific choices ahyway.

(3) Also to be addressed elsewhere is whether the supremum in the definia¥pdf

is attained. The main difficulty arises whé is 3—dimensional, as we shall explain

in a moment. In the current paper this issue plays no role because none of the bounds
that we establish requir@priori finiteness.

(4) If dimM = k+ 1 > 4 thensM(x) < 6®(x) providedoM is connected op®(x)

is superadditive. In particulas™(x) is finite. The key point to observe here is that
if N = OM is connected andl : N — X has volumeV, then there is an admissible
homotopy with k + 1)—dimensional volume at most9(V) from f to an admissible
mapf’ : N — X whose image lieX®~1:; one can then filF’ by a mapM — X with
zero k + 1)—dimensional volume.
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To see that this homotopy exists, one considetis-a 1)—sphereSin N that encloses
a ball D containing all of the open discs that contribute to the volumé .ofThe
restriction off to Sis trivial in Hi_1(X*~1) and hence inr_1(X*D) (recall that
X&-1) is (k — 2)—connected, ankl > 2). The null-homotopyH : BK — X1 of f|g
furnished by this observation can be adjoinefi|tpto give an admissible mag® — X
of volume V. This can then be filled by an admissible mBlfi’* — X of volume at
mostd® (V). The desired mag' is defined to be the adjunction bfy_p andH.

If dim M = 2 then the same statement holds; this is proved beldvemma 7.4 The
case dinM = 3 is different: Young 23] has constructed a group such that ifM is
a 3—manifold with boundarg! x S, thensv(x) is strictly larger thars®(x).

Remark 2.7 An obvious adaptation of the argumentRemark 2.2shows that ifX
is an asphericalk(+ 1)—dimensional CW complesg: M1 — X is an embedding,
andf = g|su (with f and g admissible) then FV8I(f) = Vol**1(g). That is, the
embeddingg has minimal volume among all extensionsfofo the manifoldM. We
shall use this fact in particular in the case of high-dimensional balls to estiff(td
from below.

Perron—Frobenius Theory

A square non-negative matriXis said to barreducibleif for every i andj there exists

k > 1 such that thdj—entry of PX is positive. The basic properties of irreducible
matrices are summarized in the Perron—Frobenius theorem below. See $6patal [
Katok—Hasselblattl4] for a more thorough treatment of this theory and its applications.

Proposition 2.8 (Perron—Frobenius theoreml.et P be an irreducible non-negative
R x R matrix. Then P has one (up to a scalar) eigenvector with positive coordinates
and no other eigenvectors with non-negative coordinates. Moreover, the corresponding
eigenvalue X\ is simple, positive, and is greater than or equal to the absolute value of
all other eigenvalues. If m and M are the smallest and largest row sums of P, then
m < A < M, with equality on either side implying equality throughout.

Lemma 2.9 LetP be an irreducible non-negative Rx R matrix with Perron—Frobenius
eigenvalue \. Let {vi,...,Vr} be a generalized eigenbasis for P, with v1 a positive
eigenvector for \, and with corresponding inner product (-, -). Then (u,vq) > O for
every non-negative vector u € RR — {0}.
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Proof DecomposeRR asW; & - - - & Wi where each\, is a generalized eigenspace
for P, with Wp = (v1). EachW; is P—invariant, as is the non-negative orthavit
sinceP is non-negative. The intersectioWf @ - - - & Wk) N N must then be trivial,
for otherwise it contains an eigenvector ferother thanv; (or a scalar multiple), by
the Brouwer fixed point theorem. Hence, v;) # O for everyu € N' — {0}. Since
N — {0} is connected and containg, (u,vi) is positive. O

Proposition 2.10 (Growth rate) Let P be an irreducible non-negative R x R matrix

with Perron—Frobenius eigenvalue . Let ||-|| be a norm on RR. Then there are
positive constants Ag, A1 such that for every non-negative vector u in RR and every
integer k > 0, Ap\K ||u| < HPkuH < ALK|ul.

Proof First, it is clear that by varying the constants, it suffices to consider any single
norm|| - ||. Consider a generalized eigenbafig, . .., vr} as inLemma 2.9with v;

a positive eigenvector fok). Let (-, -) and|| - || be the corresponding inner product
and norm orRR. Let 7: RR — (v;) be orthogonal projection(u) = (u, vi)vy).

Define Ag = inf{||w(u)|| /||ul| | ue N — {0}}. Note thatA; > 0 by Lemma 2.%nd
compactness ol — {0} modulo homothety. For eveny € ' — {0} we now have
AAG [|ul| < XK |w(u)]| = [|P*m(u)|| < ||P*ul|. We also have|Pku|| < A¥||u|| sinceX
is the spectral radius d?; henceA; = 1 will work. ad

3 The vertex groupsVy,

In this section we define groupé, for each integem > 2. We begin with a very
brief overview of the construction of the grou@ p so that the reader knows where
the groupsVy, fit into the overall picture.

An irreducible matrixP determines a directed graph (whose transition matriR)is
This graph is the underlying graph in a graph of groups description ofGthe in
Theorem A The vertex groups in this graph of groups are precisely the grolps
which we define and study in this section.

The groupsVy, satisfy a number of the properties that the free abelian gré@ilpdo,

but they have geometric dimension 2. In particul4f, has generatoray, . . ., ay, and
has the following scaling property (cf equatio®.q)): for any integerN > 0, the
equalityal - --al\ = (a1 - - - am) holds. Moreover, this equality requires on the order
of N2 relations of V. This follows as a special case bémma 3.5 which gives
careful estimates on the areas of certain word€nn
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The groupsVp,

Begin with m — 1 copies ofZ x Z, the ith copy having generator§a;, bi}. The
group Vp, is formed by successively amalgamating these groups along infinite cyclic
subgroups by adding the relations

by =aghy, bp=agbs, ..., bmo2=am 1bm 1.

Thus V, is the fundamental group of a graph of groups whose underlying graph is
a segment havingn — 2 edges andn — 1 vertices. We define two new elements:

¢ = a1b; anday, = by_1. Thenay, . .., an generate/y, and the relatior; - - -am = ¢
holds; sedrigure 4a). The element is called thediagonal elementf V,,. The
additional relationdy_2 = am-18m, ---, bm_k = @m_ks+1---a&n are also evident
from Figure Za).

ap ag
ag a
by
(a)

Figure 2: Some relations i¥;: ¢ = ajayazay andc® = (a1)3(ax)3(as)3(as)®

(b)

If m= 1 then we define/y, to be the infinite cyclic grouga;) and we set = a;.
Lemmas3.1and3.5below clearly hold in this case.

Lemma3.1 (Shuffling Lemma) Letw = w(ay, . . . , @m, C) be a word representing c™
in Vi, for some integer N. Let n; be the exponent sum of & in W, and N the exponent
sum of ¢ in W. Then the words aj* - - - afinc and ceaflr - - - a* also represent ¢\ in
Vmand nj = N —n¢ forall i.

Proof First we prove the second statement. The abelianizaligffVin, V] = Z™
has{ay,...,an} as abasis and the imagewfis a**™ . .. aln*" Sincec abelian-
izes toal - - - al,, we must haven, = N — n; for all i.

To prove the first statement it now suffices to establish the following set of equalities
for any integemN:

(32) (al"'am)N :a?af’}ln:afl}lna? :(am...al)N‘
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In fact we shall prove the following equalities, by inductionlan

@mkt1 - am)" = Amke1"ccan = o Amokrt” = @me o amoka )™
The casek = 1 is evidently true. Suppose the equations hold for a gikep
1. By the induction hypothesia}_al._.;---ah = a)_(@m—k+1---am). Then
sinceby_k = am—k+1 - - - @am and this element commutes wit,_x, we conclude that
N (@mki1 - am)N = (@m—k- - -am)N. The same commutation relation also yields

aﬁﬂ_k(am_m- : 'am)N = (am_k+1~-am)Na,'¥1_k
= (am"'am—k—i-l)Nar’\rl]fk
= af,\ll‘l"'afl‘\:]—k-i-lafl‘\ln‘

Finally we have &m- - - am—k+1)Val,_ = (am- - - @m—k+18m—k)", again becausan
andby_k (= am- - - an—ks+1) cOmMmute. O

Remark 3.3 (Scaling inVy,) Equation 8.2) plays a key role in this article. It shows
that the basic relation shown kigure Za) holds at larger scales as welligure Zb)
illustrates how these larger relations follow from the triangular relatigng = a;b;
andbi_; = big;.

The spacesX,

To compute area iV, we shall use a specific aspherical 2—comp¥gxwith funda-
mental groupVy. This complex is a union ofn — 1 tori, each triangulated with two
2—cells realizing the relatiorgb; = bj_; andbja; = bj_; (wherebg = ¢ in the case

i = 1). Thus theith torus has standard generators given by the 1—aghsdb;, and
its diagonal is joined to the 1—cdl|_; of the previous torus. In all there is one vertex,
l—cellsay,...,am-1,bo,...,bm_1, and 2(n— 1) triangular 2—cells.

The universal coveKp, is a union of planes, each covering one of the tori below. Each
plane contains three families of parallel lines covering the 1-eglld;, andb;_;.

The plane intersects neighboring planes alonglghdines forj # O,m— 1. These
planes are theertex spacesf X, corresponding to the graph of groups decomposition

of Vi, described earlier. The incidence graph of the vertex spaces is the Bass—Serre
tree for this decomposition, with edges correspondinig tdines § # 0, m — 1).

Remark 3.4 Figure 4b) shows an embedded disk ¥4, with boundary word of the
form N = al¥-.-al (N = 3). The triangles shown are 2—cells ¥f,. Each large
triangular region lies in a vertex spaceX,. There are similar embedded disks with
boundary worccN = alY - - - &) as well. All of these disks have area ¢ 1)N2.
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Throughout this article we usually work with tstandard generatorgay, . . ., an} for
Vm. However in the area computation below we allow words involving the elements
bi as well.

Lemma3.5 (AreainVy) Letw(ay,...,am-1,b0,...,bm_1) be a word representing
the element XN for some N, where X is a generator & or by. Let w be expressed as
Wy - - - Wk where each W; is a power of a generator. Then N < |w| and Area@vx—'\') <

35 il [w].

Note that if the sum included diagonal terms of the formi2(3w; ]2 then the area bound
would simply be (32) |w]2. The leeway afforded by the absence of these terms will
be exploited in the proof oTheorem A (In particular, it would not suffice to know
only thatVy, has quadratic Dehn function.) Also the statemin& |w| implies that
every vertex space is a totally geodesic subspacéof

Proof First we prove thaN < |w| and then we establish the area bound. Both proofs
are by induction on the complexity of the wowd, defined as follows. Lep be a

path in the 1-skeleton o, whose edge labels read. Sincew representsV, the
endpoints of lie in a single vertex space. Hence the induced jpaththe Bass—Serre

tree is a closed path. Themmplexityof w is the length ofp. Note that vertices op
correspond to edges of(or letters ofw) and edges correspond to transitions between
certain pairs of generators. Thus the complexity is also the number of such transitions
occurring inw.

If w has complexity zero thep lies in a plane. The statemeht < |w| amounts to
saying thatxN is a geodesic, which is clear. ff has positive length then there is a
non-trivial proper subpatp’ C p with endpoints on a singlg—line. (These endpoints
correspond to edges im that map to the same edge of the Bass—Serre tree, crossing
and returning.) The subwond’ C w corresponding t@' represents an element of the
form bM. Let u be the word obtained from by substitutingg,™ for w'. Thenu and

w both have complexity strictly smaller than thatwf By the induction hypothesis,

M < |w|andN < |u] = (Jw] — |[W/[) + M. ThereforeN < |w]|.

Next we establish the area bound whe&nhas complexity zero. Sincp then lies
entirely within a vertex space of,, we may assume without loss of generality that

Vm = V1 andx = by, so thatw(as, by, by) = boN in Vi, = <a1, b1, bg ’ by = by =

bia;). Since this group is abelian we can successively transpose adjacent subwords
w; and cancel pairs of the formx 1, to obtainv = albjb)~" for somen. Each
transposition of letters contributes 2 to Area(l), so we have Areaf(v ') <
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2% i< Iwil [wi]. Nextletly andlp be the sets of indices for which; is a power of
a; and by respectively. Therd_ ;. |wi| > [n| and )i, [wi| > [n[, and therefore
Sicj il W] > n? = Area@ly;™). Then we have Areafy,™) < Areafwv?) +
Areay™) < 3% [wi| [wj| as desired.

Now supposev has positive complexity. Define/ C w andu as before, so that/

representi)j'\", u is obtained fromw by substitutingbj'\" for w, and bothu andw
have smaller complexity thaw. Note thatw = wj,---wi, C wy - --wy for someig

andiy, and sou = wy - - - Wi 1BMwi 41 - - Wi Let| = {io,...,i1}. Applying the
induction hypothesis ta andw we obtain
(3.6) Areaux V) < 3Z]WiHWj\ + 3Z]Wi\M

i<j il

il
and
(3.7) Area@ =) < 3 " |wi| |wj|.

i<j

i€l

SinceM < [W| =37, [wj|, inequality 8.6) becomes

@8  Area@x™ < 33 wilwl + 3(3 wil) (D Iwl).

i<j il jel
gl

Adding togetherd.7) and @.8) yields
Area@Wly ) + Arealix ™) < 3 " il [wj]
i<]
which proves the lemma because Amem(N) < Areafvut) + AreauxN) and
Areafvu~t) = Area@'b; ). o

4 The groupsG; p and snowflake words

The groups G; p

Start with a non-negative square integer maRix= (pj) with R rows. Letm be the
sum of the entries in théth row and letn = ", my, the sum of all entries. Form
a directed grapfi® with vertices{vi, ..., Vvr} and havingp; directed edges from;
to vj. Label the edges afey, ..., en} and define two functionp,o: {1,...,n} —
{1,...,R} indicating the initial and terminal vertices of the edges, so thas a
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directed edge fronv,) to v, for eachi. These functions also indicate the row and
column of the matrix entry accounting fey. Partition the se{1,...,n} as(J;l; by
settingl; = p~1(i). Note that/l;| = m.

Let M = max{m} and choose a rational number= p/q with p > Mq > 0. We
define a graph of groupS; p with underlying graphl” as follows. The vertex group
Gy, atv; will be Vi, and all edge groups will be infinite cyclic. Relabel the standard
generators of these vertex groups {as, ..., an} in such a way that the standard
generating set foGy, is {g | j € l;}. Let ¢ be the diagonal element of the vertex
groupGy, . Thenthe inclusion maps are defined by mapping the generator of the infinite

cyclic groupGg to the elements® € Gy, andc, )9 € Gy, -

Let s be the stable letter associated to the edgeThe fundamental grouf®, p of
Gr p is obtained from the presentation

(Gy, -+, G, S1, - -+, S | S taPs = ¢ )% forall i)
by adding relations; = 1 for each edge; in a maximal tree il". However, we shall

continue to use the generating e, ...,an, S, ..., S} for G; p even though some
of these generators are trivial.

The spacesX; p

We define aspherical 2—complex¥sp by forming graphs of spaces modeliggp.
Namely, take the disjoint union of the spacés ~ X, (one for each vertex;) and
attach annuliy, one for each edge of the graph. The two boundary curves/ffare
attached to the paths labelad in Xy, andc,)9in Xy - The resulting 2—complex

X p has fundamental grou@, p and it is aspherical because it is the total space of a
graph of aspherical spaces.

The universal covef(“p is a union of copies of the universal cov9~(§ and infinite
stripsR x [—1, 1] covering the annull\,. Each strip is tiled by 2—cells whose boundary
labels readstaiPsc,g)~9; the two sidesR x {+1} consist of edges labelegl and
Co() respectively. Note that if a path crosses a strip along an edge labelad returns
overs~! then the power of; represented by the path is divisible py

Snowflake words

For each group element of the foro) we will define two types of words in the
generatorgay,...,an, S1,- .., S} representing that element, called positive and neg-
ative snowflake words. The structure of these words is governed by the dynamics of
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the matrixP. Some snowflake words are close to geodesics, and these are useful in
determining the large scale geometryGfp.

We define snowflake words recursively v € N as follows. Let

_ PM@+2+p)

No
p—Mq
Note for future reference thawy > p. Let ¢ be the diagonal element of a vertex group
with standard ordered generating get,, . ..,a,}. A word w representingN is a

positive snowflake worid either

(i) IN] > No andw = (slulszl)(a;’\il)---(s,-mumsigl)(am) where eachy; is a
positive snowflake word representing a powecgf,, and [N;| < p for all j.

In the second case note that each subwsyd :ﬁj_l)(aa'}"') represents a power af;, and
by Lemma 3.1this power isN. Then sincelNj| < p, the word ; ujsj—l) represents
either a;, IN/PIP or g;, IN/PIP. Consequently, the word; represents eithet,,N/P/d
or Cy()!N/P19. Recall that|x| and [x] denote the integers closest xosuch that
|X] < x< [x],andso|N/p|pand[N/p]p are the multiples op nearest ta\.

A negative snowflake woid defined similarly, with the ordering of the terms repre-
senting powers o, reversed. More specificallyy satisfies either

(") IN|<Noandw=al...al,or

(i") IN| > No andw = (a\m)(s,,ums. ) - - (al})(s,u1S; %) wherey; is a negative
snowflake word representing a poweragfi;) and |N;| < p for all j.

As with positive snowflake words, each wougl will represent eitheic,,)N/P/d or
ca(ij)fN/mq.

To see that the recursion is well-founded note that the definition describes an iterated
curve shortening process in which subwords of the fothare replaced by the words
described in case (i) or (jj, with appropriate powers of,; in place ofuy;; see
Figure 3 Writing [N| = Ap+ B with 0 < B < p, the new word representing' has
length at most

M-max{Aq+2+B,(A+1)g+2+(p—-B)} < M(A+1)q+2+p).

The latter quantity is stictly less thaN| = Ap+B providedA(p—Maq) > M(q+2+p).
SinceB < p, this occurs wheneveiN| > Ng. Thus, the new curve is strictly shorter
thancN if |N| > No. Eventually the subwords" all have length at mostly and the
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a?l'\l

Cg(l)LN/pJq al

Figure 3: One way of shortening'. Here{ay, a,, ag} is the generating set for a vertex group
V3 with diagonal element. The exponentdN; and N, are bothN — |[N/p|p and N3 is
N — [N/p]p. The short black edges are labeld s, ss.

shortening procedure terminates. See &ligire 4for the end result of this process.
In this figure the top and bottom halves of the boundary are positive and negative
snowflake words representira) .

Note that every snowflake word has a nested structure in which various subwords are
themselves snowflake words. These are the subwardsising at each stage. The
minimal such subwords are those given by (i) ajidnd these will be calletérminal
subwords The depthof a snowflake subword is the number of snowflake subwords
of type (ii) or (ii") properly containing it, including the original snowflake word itself.
Equivalently, it is the number of matching, s(l pairs enclosing it. Note that a
snowflake wordw contains a depth zero terminal subword if and onlwithas the

form (i) or (i).

Itis worth emphasizing that the curve shortening process is not canonically determined,
but allows many choices. In each “remainder” teaththe exponenk; may be positive

or negative; the two possible values férareN — [N/p|/p andN — [N/p]p. Figure 3
shows both possibilities occurring in a single step, for example. For this reason, a
single snowflake word may have terminal subwords of different depths. However,
Lemma 4.2below shows that these depths will not differ substantially.

Remark 4.1 A special type of snowflake word plays a key role in the proof of
Theorem C If r is an integer (that ist = p/1) andN = r for somek, then the
positive (resp. negative) snowflake word representiigs unique. What happens
is that the exponentd; in the expressions (i) or (i) at each stage are always zero;
there are no “remainder” terna;f:'j. Each subwordy; represent,)N/", andN/r is
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again a power of . Furthermore, all terminal subwords will have the foan- - - &,
or &, - - - .

Lemma 4.2 (Terminal subword depth)Given r and P there are positive constants
Bo, B1 with the following property. If a non-trivial snowflake word W representing c\
contains a terminal subword of depth d then Bor < |N| < Byr¢.

Proof If d = 0 thenw has the form (i) or (i) and 1< |[N| < Ng. Thus we need to
arrange thaBg < 1 andB; > N for the lemma to hold in thls case.

If d > 0 then we will show by induction od that
(4.3) Nordt —p(r2+...+r+1) < IN| < Nord+p(rdt+...+r+1).

The lower bound then gives

d—1
_ r -1 1 p
N}Ndl— — ] > = (Ng— —— d
IN| of p( r—l) r<0 r—1>r

Recall thatNg > p andr > 2, which implyNp > p/(r —1). Now we may findBy > 0
so thatBy < r~1(No — p/(r — 1)) andBop < 1, giving the desired bound.

The upper bound ir4(3) gives

d
r¢—1
IN| < Nofd+p<r_1> < (No +p)r®

where the last inequality uses the fact that 1 > 1. Now chooseB; > Ng + p to
obtain the desired bound.

Next we prove 4.3) by induction ond. If d = 1 then|N| > Np andw is of the form
(i) or (ii") where somey; has the form (i) or (). Theny representszg(ij)'\" with
N’ < No, and so §;u;s; %) representsy™". This implies|N| = [rN + Nj| < rNo+p.

Ford > 1 write w in the form (ii) or (ii’). Then the terminal subword has depth- 1
in y; for somej. By the induction hypothesis; representg, ) N" where
4.4)  Nor®2—p(r?=2+4 ... +1) < [N| < Nor® L4 prd=2+-..+1).

Then GjUjSiTl) representsaij”\" andrN’ — p < [N| < rN’ + p. These bounds and
(4.4) together imply 4.3). |

Proposition 4.5 (Snowflake word length)Given r and P there are positive constants
Co, C1 with the following property. If C is the diagonal element of one of the vertex
groups and W is a snowflake word representing cN then Co|w|* < |N| < Cqp|w|®,
where o =100, (r) and X is the Perron—Frobenius eigenvalue of P,
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Proof If w is non-trivial and has the form (i) or’ji then 1 < |N| < Ny and
IN] < |w| < r[N]. Then|w|* < (rNg)*, which implies

(fNo)™™ [w|™ < IN| < |w|*.
Thus we need to arrange th@g < (rNg)~® andC; > 1 to cover this case.

Next assume tha is of type (ii) or (i), which implies that the depth of every terminal
subword is at least one. Equivalently, contains the letters, s]‘l for somej. Let
s(w) be the number of letters or sj‘l in w (for all indicesj). Note that a subword of
w containing no such letters has length at md§g. Sinces(w) # 0, this implies

(4.6) W) < W < 2(No + 1)s(w).

Hences(w) gives an approximate measure of the lengthwof It can be computed
explicitly, by following the evolution of the curve shortening process, which in turn is
governed by the matriR. Note that matched, s! pairs enclose snowflake subwords
representing powers @f for variousj. These subwords will be callegl—subwords

We claim that ifw represents a power @, and every terminal subword has dejpth
or greater, then the number gf-subwords of depth is given by thekj—entry of P,
denoteobﬂj).

If i = 1 then the claim is evident from expressions (ii) and)(isince the entryp

of P gives the number of directed edges from verigxo vertexy, (and hence the
number of occurrences pfamong the indices (i), ..., o(im)). Similarly, fori > 1,
eachc,—subword of depth — 1 containsp,; ¢j—subwords of depth, by (i) and (ii").
The claim now follows by induction on: summing over all snowflake subwords of
depthi — 1 and applying the induction hypothesis, the total numbey-edubwords of
depthi is 3>, p; Vg = p{j-

Letxq, ..., Xg be the standard basis vectorsRit. Also let || - ||, denote the/; norm
onRR: ||v||, is the sum of the absolute values of the entries of the vactaet PT be
the transpose dP.

The kj—entry of P' is equal to thg—entry of the column vectorP()(x). Suppose
for the moment that every terminal subword wfhas depthd. Then fori < d,
the total number o6, s! pairs enclosing snowflake subwords of depibk given by
|(PT)'(x)||,- Hence we have

stw) = 2 (P75, + P00, + -+ + [P
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If we let dy andd; denote the smallest and largest depths of terminal subwords of
then we obtain

do di
2> [P x|, < sw) < 2> [P, -
i=1 i=1

Applying Proposition 2.1@vith the norm|| - ||, we have

<Ry dL L 2A0
20 N < sw) < A4 N = TEI0% - 1)
i=1 i=1
which implies
200A% < (W) < iAlAlAdl.

Hence by 4.6) we have

@7 (ANE < ] < (4““0“)‘\“> A

A—1

We complete the proof by applyingemma 4.2separately for the upper and lower
bounds. Usingl = d; we obtain

4(rNo + 1)A1>\> ~loa:\() w00
A1 '

IN| > Bor™ = Bo(A®)°%(") > By (
Now chooseCy > 0 satisfyingCo < By (%)ﬂ andCp < (rNg)~® to obtain
the desired lower bound.

Applying Lemma 4.2with d = dy gives
IN] < Byr® = Bi(A%)°%0 < By(2Ag) =000 w09

so chooseC; with C; > B1(2Ap) " andCy > 1. ad

5 Proof of Theorem A

Throughout this sectiof, p is fixed, withr = p/q greater than all the row sums Bf
anda = log, (r), where) is the Perron—Frobenius eigenvalueRofUnless otherwise
stated, all words use the generating &&t, . .., an, S1, ..., S} for Grp.
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The lower bound

To establish the lower bouni(x) = x?* we will show thaté(n;) > (Co?4~*) nj?* for
certain integersy tending to infinity. This is sufficient bjRemark 2.1 provided the
sequencer{) grows at most exponentially.

Note also that to establish a single inequaliy) > A, it is enough to exhibit an
embedded disk iX; p with boundary lengtim and areaA or greater, byRemark 2.2
Here we are using the facts thétp is aspherical and 2—dimensional.

Choose a vertex groug, in G, p with m > 2 and letc be its diagonal element. There
must be at least one vertex group of this type, for othenRiseould be a permutation
matrix with Perron—Frobenius eigenvalue 1. For eachoose positive and negative
snowflake wordsw;" and w;~ representingc’. Then definew; = wi(w;)~! and
n = |wi|. Note thatCpo2 |w;|* < i < C12~%|wi|® by Proposition 4.5 It follows
that the sequence; tends to infinity, and that it is exponentially bounded:

n (D02
N = iCo h Co

Next we find embedded disks; in >~(r,p with boundary wordsw; and estimate their
areas. Each\; is made of two disksA;" and A;~ with boundary wordsvt ¢~ and
c'(w-)~! respectively, joined along the boundary arcs labaledc' . After joining,
the arc labeled’ will be called thediameterof A;.

fori > 1.

The disk Ai* is a union of embedded disks in vertex spa&es and pieces of strips
joining them. Consider the curve shortening process that transfdringo wi*. To
build Ai* simply fill the central region shown ifigure 3with the embedded disk
from Figure Zb). Then fill each strip with eithefi/p| or [i/p] copies of the 2—cell
with the appropriate boundary womicg(j)qg‘laj_p, and repeat the procedure. The
resulting disk is a union of embedded disks)?np joined along boundary arcs, with
no folding along these arcs. Since each strip sepabﬁgas one can see inductively
(on the number of strips crossed ") that Ai* is embedded. For the same reason,
it suffices to note that no folding occurs whexj™ and A;~ are joined together to
conclude that); is embeddedFigure 4shows an example of a digk; with boundary
word w; .

To estimate the area ak; consider the central region id;" adjacent toA;. By
Remark 3.4his subdisk ofA; has arearti— 1)i2 > i%. Then sincd > Co2-“n* (as
observed above) we conclude that

(5.1) Area(\) = (Co?4~ )%
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Figure 4: A snowflake disk based on the mafix= (31). The upper and lower halves of the
boundary curve are positive and negative snowflake paths represetting

and thereforef(n;) > (Cp?4~*)n;2.

The upper bound

Suppose a worav represents an element of a vertex gragp. The graph of groups
structure ofG, p yields a decomposition ol aswj - - - wx where eaclw; is either an
element ofVy,, or begins Withqi and ends Wiﬂ‘E]:F for somej. These latter cases
occur when the path described tyleaves the vertex spaéé, and then returns again
over a strip inX; p.

Recall that a strip irf(r,p has sides labeled; andc,(). The next lemma shows that
a geodesic (in the generatofa, ..., an, S, - - ., Sn}) can only enter a strip from (and
return to) thea;—side.

Lemma 5.2 Let W be a geodesic in Gy p representing an element of a vertex group
V. Then W is a product of subwords Wy - - - Wx where each W; is a power of a generator
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aj, or begins with § and ends with %71 (for some | ) and represents a power of g;.

Proof Letw C w be an innermost word that begins W'ﬂ;p1 and ends withs, (for
somer) and whose corresponding path)~'(np has endpoints in the same vertex space
)N(\,U(e). Thusw = sglusg crosses a strip from the,,—side, and the subwond only
crosses strips from (and returns t@@}-sides. That isu can be written as; - - - Uk
where eachy; is a power of a generatas, or begins withs and ends Witfﬁ‘l and
represents a power @.

Note thatu has both endpoints on ag—line in the vertex spac&,p(z) across a strip
from )N(\,d(e). Henceu represents) for someN. Let ' be the word in the standard
generators 06, ,, = Vny, obtained by replacing eaah by the appropriate power @
that it represents. Consider the ward, ™ which represents the trivial elemecft in
Vm. Sinceu’ does not involve, Lemma 3.limplies that everys —exponent oU’a;N

is zero. Hence/ hasa,—exponeniN andaj—exponent zero for every# ¢.

If any of the subwordsi; of u represent a power & with j # ¢, then byLemma 3.1

one could rearrange the subwords (preserving the propertwttmresentag‘) o]

that those representing powersapfare adjacent. Then these adjacent subwords cancel
in Viy and can be deleted, shortening Therefore every; represents a power @t .

If none of the subwords;; begins withs, and ends withs[1 thenu = a'g‘, but then

w could be replaced by a wordl,’" - - aly/" representingc,»"/". The new word
is shorter tharw because of the hypothesis that< r, and therefore soma must
have the forms,vs, * after all. Now rearrange the subwords so that, * occurs last.
Againw can be shortened by replaciogvith this rearranged word and then cancelling

s, 's; at the end. O

Proposition 5.3 Let ¢ be the diagonal element of one of the vertex groups in Gy p.
Then for every N there is a snowflake word Wyr and a geodesic Wy, , both representing
cN, with [Wer| < rNo [Weeo|-

Proof The proof is by induction or{N|. Let w be a geodesic representim) .

We shall apphLemma 3.linductively to rearrange and modify into two words, a
geodesiangeo and a positive snowflake wondss. The two constructions are identical
except at the base of the induction, which involves only certain segments of length at
mostrNg.

Leta,, ..., a, be the standard generators (in order) of the vertex gkGypontaining
c. If IN| < Np then definewgeo = w andwst = alY ---aly . The desired conclusion
holds in this case since> m.
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Suppose next thalN| > Ny. By Lemma 5.2ve can writew asw; - - - Wx Where each
subword has the forra]N or guq . In the latter casequjs(l represents a power of

gj.

By Lemma 3.1we can permute the subwords of w to arrange that those representing
powers ofa;, come first, those representing powersagfoccur next, and so on. The
resulting word is still a geodesic representisy Note that two subwords cannot both
be of the forms; Ujs; 1 since they could be made adjacent, and then a cancellation of
Sy s] would be possible. Hence we can arrangevidio have the form

(5.4) W = (5,UiS, (@S, @) - (SpUms, (@)
where eacls; u,-sr1 represents a power @ . Next observe thafN;| < p for all j,

since otherwise a subword of the foq‘n CH £ could be replaced by a word of the form
azlq aths—l (that is, ¢, %, * expressed in the standard generators). Higris a

row sum ofP and sor > m', making the new word shorter than

Recall thaty; represents a power af,. By Lemma 3.1the power ofg; represented
by s;uis;* is N — N;, and soy; represents,)™N~N)/". Recall thatNo > p, hence
IN| > p > [Nj|. Then since > 2 it follows that|(N — N;j)/r| < |N|.

By induction CUG)(N—Ni)/r is represented by a geodesif)ge, and a positive snowflake
word (U;)sf satisfying the conclusion of the lemma. Defiwgeo andwss by replacing
each subwordj; in (5.4) by (Uj)geo OF (Uj)st accordingly. Then the desired conclusion
also holds forwgeo and wst, since they agree except in the subwordgqé, and
(Uy)st. o

Corollary 5.5 (Edge group distortion)Given r and P there is a positive constant D
with the following property. If C is a diagonal element and W is a word representing
cN then |N| < D |w|®.

Proof It suffices to consider the case whenis a geodesic. ApplfProposition 5.3
to obtain the geodesiwge, and snowflake woradvss representingc with |Wst| <
rNo [Wgeo| . ThenProposition 4.5mplies [N| < Cy [wsf|® < Cp ("No)® |Wged| O

The statement and proof of the next proposition are similar to those of Brady—Bridson
[3, Proposition 3.2]. The cade = 0 establishes the upper boundidfeorem A

Proposition 5.6 (Area bound) Given r and P there is a positive constant E with
the following property. If W is a word in Gy p representing xN for some N, where

X is either a generator & or the diagonal element of one of the vertex groups, then
AreafvxN) < E|w|**.
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Proof We argue by induction orjw|. We shall prove the statement with =
(3/2)r’D? (D given by Corollary 5.5. Let ¢ denote the diagonal element of the
vertex groupVy containingx.

Write w asw; - - - W where eachw; has the forrr*a]-'?‘i or is a word beginning ins‘iil
and ending irqfl. In the latter casew; represents an element of the fooli or aj'?'i.
Let I andl, be the sets of indices for which these two cases occur, avd le¢ the
word obtained fromw by replacing each subwond; of this type with the appropriate
word cN' or a]-'?‘i . Thenw is a word in the standard generators\f (and the diagonal
element) representing", of length>"; N;.
By Lemma 3.5we have Areaf/x ) < 3> i<jNiN;. To estimate eacl\; we use
Corollary 5.5as follows. Ifi € I, thenw; represente™ and Corollary 5.5gives
N < D|wi|*. If i € l5thenw; = SiUis; ! for someu; representmg:(,(h)'\"/r (because
Wi representsa]-'?'i). Then byCorollary 5.5we haveN;/r < D(|wi| — 2)* < D |wi|“,
soN; < rD|wi|*. Finally if i € (Ic U la) thenN; = |wi| < |wi|®. Putting these
observations together we have
(5.7) Area@'x ™) < 3r?D? " |wi| jwj|*
i<j
Next we use the induction hypothesis addrollary 5.5t0 bound Areafw—1). First
note that Areagw 1) < ZiG,CArea@viC‘Ni)JrZieaArea@viaji‘N‘).
If i € lcthenw;, = gjluigi wherey; representa,—i”\‘i. Applying the induction hypoth-
esis tou; we have Areaa; ™) < (3/2)r?D?(jwi| — 2)?*. The strips; *a;™'s,c™™
has ared\i/q < (D/q) |wi|* < D |w;|*, by Corollary 5.5 Thus
Areafvic ™) < (3/2)r°D*(Jwi| — 2% + D |wi|*
(5.8) < (3/2r*D((Iwi] — 27 + |wi[*)
< (3/2)r%D? |wi|** .
The last inequality above uses the fact that for numbers 0 one has X + 2> >
XA(X + 2)* + 2%(X + 2)* > X2 + (x+ 2)*.
If i € la thenwi = sus; ! where u representsco(ji)’\‘i/r. Applying the induc-
tion hypothesis tay; we have Areafic, ~N/") < (3/2)r?D?(jwi| — 2)**. The strip
5GN/'s; ta ™ has areaNi/r)/q < (D/g)(jwi| — 2)* < D(jwi| — 2)*, by Corol-
lary 5.5 Therefore
Areafwia ™) < (3/2r’D*(|wi| — 2)** + D(jwi| — 2)°
(5.9) < (3/2)rD(((w| — 2)** + (Iwi| — 2)*)
< (3/2)r?D? |wi|*.
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Combining 6.8) and 6.9) we then have

(5.10)  Areafw/ ™) < Y (3/2r2D?[wi* < D (3/2)r’D? [wi[**.

i€lcUla

Finally, adding .7) and 6.10 together gives the desired result:
2
Areafvx V) < (3/2)r2D2<Z |Wi\°“>
i

< (3/2)r2D2(Z \wi\)za = 3/2rD2w>. o

6 Suspension and snowflake balls

Throughout this sectioR denotes a non-negati x R integer matrix with Perron—
Frobenius eigenvalug, andr is an integer which is strictly greater than the largest row
sum of P. In this section, we give an explicit description of the suspended snowflake
groups XG; p and the 3—dimensiond(XG; p, 1) spacesX;’jp. Then we describe
snowflake balls B which embed in the universal cover (xﬁp and estimate their
boundary areas. We show how to iterate this suspension procedure to obtain groups
EkG,,p and k + 2)—dimensional spac@(ﬁ,z. Lastly we define higher-dimensional
snowflake balls and estimate their boundary volumes.

Remark 6.1 In order to realize the exponents{ 1)/k (the endpoints of the intervals
in Figure 1 which are omitted otherwise) we add the free abelian gt the class
of snowflake group&; p. We endowZ? with snowflake structure as follows

Z? = (aj,a,C|aa; =C, C= apay)

and use the corresponding presentation 2—compléx place of X; p. There is no
matrix P associated to the grouf?, and so the only condition that we impose on the
integerr is thatr > 2. Since there are no stable letterswe define the snowflake
words to be the commutatovg = [a], a,] and define the snowflake disBE = Ayi

to be the unique embedded disksXrwith boundaryw; .

In the discussions that follow, whenever we talk about snowflake grGupswe shall
always includeZ?, and whenever we use the complexes we shall always include
the presentation 2—complekfor Z2 described above.
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The groups XG; p

Let ¢: Grp — Gy p be the monomorphism which takes eagho af and eachs; to
itself. The groupXG; p is defined to be the associated multiple HNN extension with
stable lettersi; andvy:

NGrp = (Grp,Us, Ve | UiQut = $(9), vigvy* = ¢(Q) (9 € Grp) ).

The spacesp

These spaces will have fundamental grai@, p. Recall thatX; p is a 2—dimensional
K(Gr p, 1) space. Thereis a cellular még X; p — X; p Which induces the magp on
the fundamental group. It mapsthe 1—cells labgldtbmeomorphically to themselves,
maps the 1—cells labeleq to themselves by degraemaps, and maps each 2—cell
in the obvious manner; the image of each triangular 2—cell has combinatoriafarea
and the image of the remaining 2—cells (which havesaadge in their boundaries)
have combinatorial aree. The 3—comp|ex>(;°jp with fundamental grouG; p is
obtained by taking two copies of the mapping torus of the lhagnd identifying them
along a copy ofX; p. From this perspective it is easy to see tb(ﬁp is aspherical;
each mapping torus is aspherical sinGe is an aspherical 2—complex, and sinke
induces the monomorphisgin 71. We give more details of the cell structure)q'fP
below.

Start with the 2—compleX; p and form two copies oX; p x [0, 1]. Each copy is given
the product cell structure, in which eakhcell of X; p gives rise to aK + 1)—cell in
Xrp % (0,1). The “bottom” sideX; p x {0} keeps its original cell structure and the
“top” Xrp x {1} is subdivided by pulling back und&r the cell structure ofb(X; p).
That is, each triangular 2—cell in a vertex spac&of is subdivided intar? triangles,
and each edge space 2—cell (bearing the boundary:tgt;@jgfla{) is subdivided into

r copies of the same cell.

The vertical 1—cells of the two copies ¥f p x [0, 1] are labeledi; andv; respectively,
oriented fromX; p x {1} to X; p x {0}. Finally to form Xﬁp one attaches the bottom of
each piece t&; p by the identity, and the top by the map Figures5 andb6 illustrate
the two types of 3—cell occurring %o

Snowflake balls

We define embedded 3-dimensional bﬂ% in >~<r37P in a similar fashion to the
snowflake disks constructed Bection 5 An essential difference, however, is that
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V1 Vi

\%1

Figure 5: A triangular 3—cell (withh = 2)

Co()) Ca i)

& & g 3 V1

Vi Vi Vi

Figure 6: A rectangular 3—cell

now r is an integer, and the observationdemark 4.Japply. That is, snowflake disks
with diameter labeled" are unique, and the corresponding snowflake words have no
“remainder” terms.

As in the proof ofTheorem Awe let ¢ be the diagonal element of a vertex grovp

in Grp C XG;p wherem > 2. We letw;" andw;~ denote respectively the (unique)
positive and negative snowflake words representing (Note that the indexing here
differs from that inSection 5 where these words would be calleg .) Let B? be the
snowflake disk bounded by; = wi"(w)~1, with diameter labeled” . Note thatB?

is the same as the snowflake didki of Section 5

For each positive integgr we shall use atack of thickened van Kampen dissglefine
an embedded 3—baIBJ-3 in the universal cover o)(ﬁp. Note that the universal cover
of Xﬁp contains infinitely many embedded copies of the universal cove¢ gf one
for each coset oG, p in XG; p. We call two such copieadjacentif the cosets have
representatives which differ by right multiplication uy* or vi?.

The map®: X, p — X p lifts to a map of universal covers which we also denote
by ®. Consider the imag@(B?) of the embedded snowflake dig. This image

is again embedded, but its boundary word({sv). If we apply the curve shortening
procedure once to the subwap@w;") we obtainw;fH, which is the positive snowflake
word forc" ™. Similarly, if we apply curve shortening once to the subwo(d;) we
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obtain the negative snowflake word fof™. Thus ®(B?) is a sub-diagram oB,Jrl
Thetop half of the ball B3 is defined to be the union of the mapping cylindersbof
with domainB? and codomaer,%rl wherei ranges from 1 tq; the copies oB? are
identified. This embeds in the universal coveb@ﬁj as follows. The diskB2 embeds

in some copy of the umversal cover ¥f p, 82 embeds in the adjacent copy obtained
by right multiplying byu , and the mapping cylinder ob: 82 — 82 embeds in
the universal cover ok?;, to interpolate between the imagestf and B%. Note that
this embedding is possible since the universal coveringfgf can be described as
an infinite union of mapping cylinders @b: X, p — X; p which is encoded by the
Bass—Serre tre€ corresponding to the multiple HNN description BG;, p.

We continue to add mapping cylinders®t B? — B,Z+1 fori=2,...,j,asindicated
in the top half of the schematic diagramAigure 7 The image of the union of the first
18
Up sz*l

B2
u1 A’
""""""" B]2+l
\%1 \
i
Vi
B,
- B2

Figure 7: A schematic diagram of the embedded Bﬁll

few embedded layers is shownkigure 8 In a similar fashion, we can embed a second
copy of the union of mapping cylinders @: B? — BIZJrl However, this time we start
from the copy ofBj2 in the image of the previous union, and add the mapping cylinders
in descending order (so= |, ..., 1) and require that new copies of the universal cover
of X; p differ by right multiplication byvfl. The image of this family is indicated in
the lower half of the schematic diagramri§ure 7 and the total union is the embedded
ball BJ-?’. It is easy to see that the union embeds, since each mapping cylinder embeds,
and distinct mapping cylinders correspond to distinct layers in the 3—com~ﬂ§x
These layers are distinct, since they map to distinct edges of the Bass—SefTe tree
Finally, there is a 2—dimensional “fringe” at the equaﬁﬂ1 level. We remove this
fringe by simply replacing the two embeddings ®f 82 — BJZJrl by embeddings of
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LV

Figure 8: A few layers ij3

o: B? — (B).

Lemma 6.2 Given r and P there is a positive constant Fg such that ‘8Bj2| <
Area@B?) < Fo|0BF| for every j.

Proof The ball BJ-3 is a union of 2 mapping cylinders. Seleigure 7for a schematic
representation. Its boundary area is twice the area afpiper hemisphererThis latter
area is estimated as follows.

For each 1< i < j, there are|9B?| vertical (conjugation byu;) 2—cells, which
interpolate betweer®B? and ®(9B?). This proves the first inequalityldB?| <
Area(@B?).

For each 1< i < j there arehorizontal 2—cells which interpolate betwe@(aBiz_l)
and9B?. In the casd = 1 there is no Ioopi)(aB%), and the horizontal 2—cells just
fill the van Kampen diagranB2. For anyi, the horizontal 2—cell contribution to the
area is bounded above B9B?|. To see this, note that the horizontal interpolation is a
union of pieces of the fornga;, - - - a;msfla]-*r where{ay, ..., an} generates a vertex
groupVm, and the stable letteg conjugates the diagonal element of this vertex group
to some generatag of G; p. The area of this piece i, and its contribution tdoB?|
ism+ 2.

Counting vertical and horizontal 2—cells for both hemispheres we obtain

J
Area@B’) < 4> |0B?| .
i=1
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Proposition 4. 5mplles thatjwi"| < Cy/“r'/* and so

4Z\aBZ| = BZ\wﬂ < 8C 1/“Z(rl/a)'

The last term is a geometric series, and so is bounded abolvg(bl/a)j for a positive
constantF; (independent of). Proposition 4.5lso givesCl_l/“rj/“ < ‘WJ*‘ and so

il F, 1/
Area@B?) < Fori/® < ?Ocl/ |0B?| .

Now the desired (second) inequality holds by takiqg= (F6/2)Ci/a. |

The inductive supension procedure

Having discussed-G; p we define further suspensiorEanp having k + 2)—
dimensional Eilenberg—MacLane spac)é,'%tz, and k + 2)—dimensional snowflake
balls B*? c X(t?. We assume that the group*—'G; p, the spaceX\t!, and
snowﬂake baIIsBk+l X5 have already been constructed.

First we define the groups*G; p. Let ¢x: XX 1G; p — Z*1G; p be the monomor-
phism which sends; to & and which leaves fixed the stable lettersu;, andvi. We
defineEkGr,p to be the multiple ascending HNN extension with two stable letigrs
andvy, each acting bypy:

SKGrp = (ZK Gy p, Uk, Vi | U@U = k(0), kgt = ¢k(Q) (@ € =X 1Grp)).

Next we define the spacéﬁ‘f*z. The homomorphismpy is induced by a cellular
map ®i1: XEE — X5t We defineX5? to be the double mapping torus with
monodromy®y, ;. That is, take two copies @Kfjgl x [0, 1], identify the “bottom”
sidesX{p! x {0} to XE* by the identity, and attach the “top” side§'5* x {1} to
X5! by the map®y.1. The vertical 1—cells of the copies X5 x [0, 1] are labeled
ux andvi respectively, oriented frori»("Jrl x {1} to X"Jrl x {0}. The resulting space
X:‘fz is given a cell structure analogous to thab(p”fp As before, X"Jr2 is aspherical,
has dimensiork + 2, and has fundamental grodﬁ‘an

Now we define the higher-dimensional snowflake balls. The map lifts to a map
Xt — Xbt which we will also call®y,1. We define k + 2)—dimensional balls
B"+2 of dlameterrJ for eachj as unions of mapping cylinders (calléad/erg of the
map ®y, 1 restricted to the+ 1)—dimensional ball8k+!. These mapping cylinders
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are assembled as shownHigure 7 with B! in place of B?. More specifically,
we assume inductively thab,,1 mapsB<t! into a subcomplex oB!‘jll for each

i. Then the upper hemisphere B]‘“ is the union of the mapping cylinders of
Pypp: B Blkjll wherei ranges from 1 tg — 1, and the mapping cylinder of
Dip1: B — @y1(BIFY). The lower hemisphere is defined similarly, and the two
are identifed alongby,1(B[*"). Note that the subspac@+! — &, 1(B']) of the

i
domains of these mapping cylinders lie in the boundarﬁ}‘dfz.

Recall that®y,; mapsBKt! to a subcomplex oBKH1

i1 There is an induced map
Py, from the mapping cylinder ofy;1: Bt — B to the mapping cylinder of

Dy1: BT — B usediy 1 xid on B x | and @y 1 onBf L. Thendy,, maps

i+1-
layeri of B}‘*Z to layeri + 1 of Bj"jf foranyi < j (in either hemisphere). These maps
defined on the layers d&"* join together to define the mapy»: Bf"* — Bj"jlz

The balIsB}‘Jr2 embed into)w(:‘fg,z exactly as the balls? embed intoX? . That is, we
considerXf5? as a union of copies of the mapping cylinderdf, 1 : X5+ — Xb!
with the mapping parameter corresponding to right multiplicationupﬂr or v;l.
Then the embedding*? — Xt? is assembled from the embeddirgs* — Xt*
(for i < j) as shown inFigure 7 with the upper hemisphere extending in the
direction and the lower hemisphere in thedirection. Under this embedding, the map
Dpn: B}‘+ 2_, Bj"jlz described above is simply the restrictiondf, » : )N(:",tz - )N(:",tz

to B2,

For anyk, we define theshellof a snowflake balBf to be the subspadsl — @(BF ,),
or simply BY in the casq = 1.

Lemma 6.3 Vol¥(shell@)) < Vol*~(9BY).

Proof It suffices to show that everlg—cell of the shell has ak(— 1)—dimensional
face contained im)Bjk. Recall thatBJk is a union of layers, so consider the intersection
of the shell with layeri (in either hemisphere). This layer is a mapping cylinder
M(@y_1: Bt — BS]) and its preimage B ; under ®y is layeri — 1 of this
smaller ball (or is empty in the case= 1). Hence the intersection of the shell with

layeri is
M(@c1: BT BT — @M (@t B — BETY)

= M((I)k_li B!“l — B:(—‘:ll _ M((I)k: cI)k—l(B!(__ll) — cI)k—l(BE(_l)))

= M(@1: (BF T — &1 (BE]) — (BE — &iea(BFY))



Isoperimetric Spectra 37

if i >1,andisM(®_1: B — Bﬁll) in the caseé = 1. Either way, this part of
sheII(BJk) is the mapping cylinder of the restriction &f_; to shellB¢~1). Hence each

k—cell has aK — 1)—dimensional face in sheBf~1), which is contained irﬁB}‘. O

The next result is a higher-dimensional analogueeshma 6.2

Lemma 6.4 Given r, P, and k > 3 there is a positive constant Fy such that
VoI*~2(9B 1) < Vol*1(9BY) < Fi VoI*~2(0BK 1) for every j.

Proof We prove, fork > 3, the following two statements: there exist positive
constantsey, Fx such that

(1) (chl/a)(rl/a)j < VOIkiz(aBJ!(_l) < Ek(rl/a)j’and
(2) VoI2(0Bf) < Vol H9BY) < Fi Vol 2(9Bf )

for all j (with C; given byProposition 4.5 StatementX) is a higher-dimensional
analogue ofProposition 4.5and @) is the main statement of the lemma. The two
statements are proved together by inductiorkon

If k = 3 then () follows from Proposition 4.5with E3 = anl/a

given byLemma 6.2with F3 = Fo).

. Statement2) is

For k > 3 we prove {) as follows. The induction hypothesis implies that
VoI*2(0Bf 1) < Fi_1 VoI*3(9Bf?)

by (2) and V0I<—3(8BJ!‘—2) < Ek_l(rl/a)j by (1). Hence Vo'f‘z(aB}‘_l) < Ek(rl/a)j
with Ex = Fx_1Ex_1. We also have (by induction) Vﬁiz(aB}‘*l) > Volk—3(aB}<*2) >
(2C; Y*)(r¥/*) by (2) and (1). This establishesl].

To prove @) we count vertical and horizontak & 1)—cells of@B}‘ as in the proof of

Lemma 6.2 In each hemisphere <BJ!‘, layeri is a copy of the mapping cylinder of
®_1: B — BT This layer meet®BK in horizontalcells which are thek(— 1)—
cells of shellB“"1), andvertical cells, each of which is the product of b { 2)—cell
in 9BK=1 with 1. This latter observation implies the first inequality @ (taking
i = j) and also that the number of vertical cells in layeés at most Vof~2(9B1).
The number of horizontal cells is at most W(@B}‘—l) by Lemma 6.3 Adding the

contributions from all layers in both hemispheres, we obtain

j
Vol“1(9Bf) < 4> Vol“?(0B ).
i=1
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Statement 1) implies 437_, VoI*"2(9Bk-1) < 4E¢>_,(r¥/*) and the latter sum
is a geometric series. Hence Yot(0BY) < F(r'/*) for some constanE. Now
(1) implies that Vof~1(9BY) < (F’k/2)(Ci/a)Volk*Z(OB}“l), establishing ) with
F = (F[/2)CY/°. o

7 Proof of Theorem C

We will establish upper and lower bounds for thedimensional Dehn functiong (x)
of the groups=k—1G; p and these will be equivalent. As usualdenotes the Perron—
Frobenius eigenvalue ¢f anda = log, (r). In the case of2k"1Z2 we definea = 1.

The lower bound

Asinthe proof ofTheorem Awe show that the embedded snowflake bBiftst ¢ X 5!
have the correct proportions and are numerous enough to deteffA{pgefrom below.

First we show that for everl¢g > 1 there is a constar@y such that
(7.1) Vol LBy > G VolX(aBk+1)2

for all i. The casek = 1 was proved in%.1) with G; = (Cp)?4 . Fork > 1
we proceed by induction. Note that Y6HBE) > VoIX(BK) since the latter is the
volume of the mapping cylinder obyx: B — ®y(BK) inside B¢*1. We also have
VoIX(BY) > Gy_1 Vol*"1(9BX)2* by the induction hypothesisLemma 6.4implies
that Gy_1 VoI*"1(9Bl)% > G_1F, 2 VoI¥(0B+1)2e | Equation 7.1) now follows by
taking Gy = Gk,]_Fk__i_zf.

Next we show that for eack > 2 the sequence (\)&I@B}‘“))i is exponentially
bounded and tends to infinity. Consider first the dase2. Then we have

VOI(9B%,)) _ Fol0Ans| _ (ri+1c1>1/“ . <r<:1>1/a
Vol2(9B3) © [0An] rCo °\ G

where the first inequality holds byemma 6.2 and the second biroposition 4.5
Thus, the sequence is exponentially bounded.ksr2 we have

Volk(OB)  Fisa VOIKY(0BE )

VolX(9BKtY) — volk1(9BK)
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by Lemma 6.4and so (Vdf(aB}‘“))i is exponentially bounded, by induction én It
tends to infinity because

VoIX(OBHY) > VoI2(9B?) > [0A| > 2C, Y/ (r/)

by Lemma 6.4Lemma 6.2 andProposition 4.5Now, using Remarkg.1and2.7, we
conclude from 7.1) that 60 (x) = x2*.

The upper bound

To establish the upper bound we must work with Dehn functiéié) modeled on
arbitrary manifoldsM with boundary, as defined Bection 2 Recall that thelimension
of 52;" (x) is the dimension oM, andég" (x) agrees with the ususi-dimensional Dehn
function whenM is the k + 1)—dimensional ball.

AfunctionF: N — N is superadditivéf F(a+ b) > F(a) + F(b) for all a,b. Recall
that thegeometric dimensionf a groupG is the smallest dimension of K(G, 1)
complex.

Theorem 7.2 Let G be a group of type F, and geometric dimension at most n, and
fix a finite aspherical Nn—complex X with fundamental group G. Suppose that the Dehn
function 5('\3/' (X) (defined with respect to X) satisfies

S () < F(x)

for every n—manifold M, where F: N — N is non-decreasing. Let H be a multiple
ascending HNN extension of G. Then H is of type Fn11, has geometric dimension at
most n+ 1, and

oM < F()

for every (N + 1)-manifold M.

In the hypotheses we are including Dehn functié}¢x) whereM has more than one
connected component (otherwise we should addRhiatsuperadditive)Stipulation:

the n—dimensional Dehn functions in the conclusion are defined with respect to a fixed
complexY constructed in the proof of the theorem.

Proof First we define the finiten(+ 1)—dimensional compleX with fundamental
group H in the usual way. Suppose the multiple ascending extensiork lsiable
letters. Formk copies ofX x [—1, 1], give each the product cell structure, and attach
each copy oiX x {—1} to X by the identity map. Then attach each copyof {1} to
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X by the appropriate monodromy map, and call the resulting spatetZ C Y be the
union of the spaceX x {0}. There are natural projections along the fibgys Z — X
andp;: Z — X which factor througlz x {—1} andZ x {1} respectively. Le¥ be the
universal cover o and letX andZ be the preimages 6 andZ in Y. The projections
pi lift to projectionspi: Z — X along fibers. Note that each componenXoéndZ is
a copy of the universal cover &, and in factpg: Z — X is a homeomorphism.

Each operk—cell 0% in Z x (—1,1) C Y has the formr*1 x (—1,1) wheresk L isa
(k— 1)—cell in X, and the restriction offyy to oX N Z is simply projection onto the first
factor. SinceZ is not a subcomplex of , we measure volume i by passing tX via
po. The description ofy just given leads to the following observation:fif M — Y
is an admissible map transversez@nd X, andN = f ~1(Z) andMg = f~1(X), then
po o f|n andf|v, are admissible and

(7.3) Vol(f) = VoI*~(po o f|n) + VoI*(f|wm,)
where the left hand side is volume ¥hand the right hand side is volume ¥

Now suppose thatl is a compactr{+ 1)—manifold with boundary and let: M — Y

be a least-volume map with bounddry= g|sm. We can arrange by a homotopy that

N = g 1(2) is a properly embedded codimension one submanifold with a product
neighborhoodN x [—1,1] ¢ M such thatg=%(Z x (—1,1)) = N x (—1,1). (To do

this, consider the composition: Y — Y — Stv St — St whereSt v &t is the
underlying graph for the multiple HNN-description of(Y) andSt v St — Stis a

fold. By a homotopy ofg, = o g can be made smooth in a neighborhoodyot(Z2).

By a further homotopy, we can arrange th4F) is a regular value of- o g; now use
transversality.) The product structure Nnx [—1, 1] may be chosen so thginx(-1,1)

is the mapg|n x id. Note thatN may have several connected components.

We claim that Vol(po o g|n) is smallest among alN—fillings of pg o f|sn: ON —
X. Assuming this for the moment, the theorem is proved as follows. We have
Vol™1(g) = Vol"(ppog|n) by (7.3) becaus& has dimensiom. Then Vol'(pgog|n) =
FVoIN (poof |on) by (2.5) and the claim, and the latter is at m&E(Vol"(poof|sn)) by
the definition ofsY . Equation 7.3) implies thatsX (Vol"*(po o f[sn)) < S8 (VoI(f)).
Then we have the desired bound
FVolM(f) = Vol™(g) < ox(VoI"(f)) < F(Vol(f))
by the main hypothesis and we conclude #j#{Vol"(f)) < F(Vol"(f)). Since Vol(f)
was arbitrary andr is non-decreasing, we hadf (x) < F(x) for all x.

Now we return to the claim that V(po o g|n) = FVoIN(po o f|sn). We show that if
Po o g|n is not a least-volume filling ofyg o f|gn theng can be modified rebM to a
map of smaller volume, contradicting the choicegof
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Let Mo = g~%(X), and note that the frontier d¥lp in M is N x {—1} UN x {1}.
These two subsets @M will be denotedVl, andM; respectively.

Suppose V8I(h) < Vol"(pg o g|n) for some maph: N — X with h|sny = po o fan.
Form a new copy oM in which N x (—1,1) is replaced byN x (—2,2). Define a
new mapg': M — Y by letting g’ be g on Mo, (py* o h) x id on N x (~1,1), and
by extending to the remaining regions as follows. Note tipgtl(o h) x id extends
continuously toN x [—1,1] ashonN x {—1} and agy; o pgl ohonN x {1}. Since
each component of is contractible the mapg; o pgl ohand g|Mo+ are homotopic rel
ON. We letd [nxp2;: N x [1,2] — X be such a homotopy. Similarty |nx[—2,—1; is
defined to be a homotopy X from Q\M(; to h, fixing ON pointwise. This defines the
mapg: M — Y.

Now collapse each fiber @N x [1,2] andoN x [—2, —1] to a point, to obtain a new
copy of M with a mapg”: M — Y which agrees withg on oM. Note that all of
M — (N x (=1, 1)) maps byg” into X andg” |nx(-1,1) = (pglo h) x id. Hence by 7.3)
we have Vol 1(g”) = Vol"(h) < Vol"(pp o g|n) = VoI™t(g), a contradiction. O

Lemma 7.4 If G is finitely presented, 0(X) < F(X) with F(X) superadditive, and M
is a compact 2—manifold with boundary, then 5'(\5/' x) < F(x).

In particular if 5g(X) is superadditive thed¥(x) < ds(x) for every compact 2—
manifold M.

Proof If M is connected with one boundary component thengetV — D? be
a quotient map which collapses the complement of a collar neighborhoa@iMof
to a point. Then Area(o q) = Area() for any mapg: D? — X, and we have
JE (%) < ds(¥) < F().

If N is closed ther{"N(x) = 5 (x) sinceN may be assigned zero area by mapping

it to a point. So without loss of generality assume thlahas no closed components.

For each componem’ of M there is a quotient map to a connected, simply connected
spaceZ’ which is a union of disks (one for each boundary componeri¥6f and

arcs joining them. Taking a union of such spaces and maps, we have a quotient map
M — Z. Every mapD? U --- U D? — X extends to a mag — X which yields (by
composition) a mapi — X with the same area. Hend (x) < 62°2P*(x). Now
superadditivity ofF implies 62°YP*(x) < F(x). O

Theorem 7.5 Let G be a finitely presented group of geometric dimension 2 with
0c(X) equivalent to a superadditive function. Let H be obtained from G by performing
n iterated multiple ascending HNN extensions. Then (5,(4n+1)(x) < dc(X).
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The upper bound ofheorem Cfollows immediately, byTheorem A

Proof Let Fo(x) be superadditive wherEo(x) ~ dg(X). Thendg(X) < F(X) =
CFo(Cx) + Cx for someC andF(x) is superadditive. The result now follows directly
from Lemma 7.4andTheorem 7.2 |

The casen = 1 of Theorem 7.5vas proved by Wang and Prid2F], using a more
direct method.

8 Products with Z

In this section we determine higher Dehn function&ok Z for certain groupss. In
these cases the geometry@fx Z is accurately represented by embedded balls which
are products of optimal balls i6 with intervals, with suitably chosen lengths. We
conclude the section by provingheorem D

To establish an upper bound for Dehn functions®fx Z we need the following
refinement ofTheorem 7.2 The proof is based on Theorem 6.1 of Aloret@l [1].

Theorem 8.1 Let G be a group of type Fn and geometric dimension at most n, and
fix a finite aspherical n—complex X with fundamental group G. Suppose that the Dehn
function 6 (X) satisfies

X)) < CF

for every n—manifold M, and fixed C > 0 and s > 1. Then
M) < CYRY

for every (N + 1)-manifold M.

Proof First note that we are in the situation ®heorem 7.2which is valid, but no
longer provides the best possible upper bound. Defing, py, andp; as in the proof
of Theorem 7.2 Note that now the projections along fibaxs, p1: Z — X are both
homeomorphisms, and Vigho o f) = Vol¥(py o f) for anyf: Nk — Z.

Given a compactn(+ 1)—-manifold M with boundary, consider a mafp: oM —
Y. Arrange thatL = f~%(Z) is a codimension one submanifold with a product
neighborhood. x [—1, 1] ¢ M such thaf ~}(Z x (—=1,1)) = L x (=1, 1). As before,
the product structure oinx [—1, 1] can be chosen so thgi «(—1,1) is the magf | xid.
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We will prove thats. ,(xX) < CY/Sx>~%/S by induction on the number of connected
components of_. If L = () thenf(dM) c X. The components a®M may map into
different components of. However, by joining these components with a minimal col-
lection of embedded arcs in the 1—skeletolYobne obtains a contractible subcomplex
T C Y of dimensionn containingf (’M). Thenf extendsto amag: M — T C Y
with Vol"*1(g) = 0.

Now assume thdt + (). LetZ be a connected componentdsuch thatg = f ~(Zg)

is a non-empty union of components bf andf(L) lies entirely in one component
of Y — p1(Zo). (Think of Ly as aninnermostunion of components of..) Let
N; € OM — (Lo x (—1, 1)) be the union of components having boundbagyx {1}.
That is,N; and its complement_; in OM — (Lo x (—1, 1)) map to opposite sides of
Zo x (—1,1) in Y, and in factf (N1) C p1(Zo) C X, by the choice 0%,.

Our method now is to filLy with a least-volume copy dfl; and then fill the two sides
of OM efficiently by M (using the induction hypothesis) ahd x |. These fillings fit
together to yield a filling of by M having the required volume.

Letv = VoI"(f) andu = VoI *(ppof|,) (which is equal to VAI(f |Lyx(—1.1)) by (7.3).
Leth: N; — X be a least-voluméN; —filling of po o f|,. Thus,h|sn, = po o fli,
and Vol'(h) < Cu8. Define a new map’: &M — Y by first collapsing the fibers of
Lo x[—1, 1] to points, and then sendir¢g) 1 by f andN; by h. Sinceh is least-volume
andLo x [—1,1] was collapsed we have Vif’) < v— u. Also (f')~1(Z) = L — Lo,
so by the induction hypothesis there is a ntap: M — Y with g-1lsm = f’ such
that
V0|n+1(g_1) < Cl/S(V o u)2—1/s.

Nextletg;: Nix[—1,1] — Y be a homotopy which begins withon Ny x {—1} and
pushes acrosgy x (—1,1) and then deforms withip;(Zo) to f In, , with the boundary
fixed pointwise. This latter homotopy exists singgZo) is contractible. Note that
Vol™1(g;) = Vol"(h) by (7.3) sincep;(Zo) has dimensiom.

Now join N; € OM to (N1 x {—1}) € N; x [—1, 1] to get a new copy oM and a
mapg: M — Y extendingg_; andg;. Theng|sm = f and

V0|n+l(g) < Cl/S(V_ U)2_1/5+Vh
wherevy, = Vol"(h). Now s > 1 andv > u imply

Vol (g) < CYS(v— upts 4 v,

(8.2) . u o V-1
—cls2-isfq_2 Y W
Ccl/s\2 1 Vel B
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Recall thatv, = VoI"(h) < VoI"(f|n,) < v becauséh is least-volume. Hence

u  V/9-1y, u vf]l/ 91y,
(8.3) v Cl/sy = Vv + Cl/sv
u Ve
= 1- -4+
v Cl/sy

The main hypothesis implies that, < Cuw®, or vlh/S < CYsu, again because is
least-volume. Thus

u v u u
(8.4) 1—v+Cl/S si=-g+y =1
By equations §.2), (8.3, and 8.4 we have Volt'(g) < CYsv2 Vs wherev =
Vol"(g|sm), which completes the proof. ad

Definition 8.5 Let G be a group of typeFi1 and geometric dimension at mdst 1.
The k—dimensional Dehn functioﬁg‘)(x) has embedded representativethere is a
finite aspherical K+ 1)—complexX, a sequence of embeddekl{ 1)—dimensional
balls B; ¢ X, and a functionF(x) ~ 5g)(x), such that the sequence given lwy) (=
(VolX(8B)) tends to infinity and is exponentially bounded, and“V&(B;) > F(n;) for
eachi.

The lower bounds established in this article for various Dehn functions are all obtained
by constructing embedded representatives and applying Rer@atkend 2.7. In
particular thek—dimensional Dehn functions &f~1G, p andx*~1Z? have embedded
representatives.

The next result generalize$, [Theorem 6.3] to higher dimensions.

Proposition 8.6 Let G be a group of type Fxi1 and geometric dimension at most
k + 1. Suppose the k—dimensional Dehn function §®(x) of G is equivalent to x° and
has embedded representatives. Then G x Z has (K 4+ 1)—dimensional Dehn function
60+D(x) = x2~ 1/, with embedded representatives.

Proof We establish the lower bountftD(x) = x2~1/s for G x Z as follows. Since
5g)(x) has embedded representatives Xef(x), Bj, and ;) be as inDefinition 8.5
without loss of generality suppose tha¢x) = Cx for someC > 0. Definem =
3Vol¥t1(B;). The spaceY = X x S' has fundamental grou@ x Z and universal
coverY = X x R. Consider theK + 2)—dimensional balls

Ci = B x[0,m/3n] C Y.
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The boundary ofC; is 9B; x [0, m/3n;] U B; x J[0, m;/3n;] which implies that
Vol*T1(C) = m.

We also have VIF2(C;) = Vol* 1(B)m /3n; = (m)?/9n; for eachi. Sincem =
3Volt1(B;) > 3C(n;)® we have (8)~Y/S(m)Ys > n;. Then

m 2 Cl/s B
vol2(c) = G (321/s> ()=

Note thatY is aspherical and has dimensi&nt+ 2, and soC; is a least-volume ball
(cf Remark 2.J. Therefores®tD(m) > (CY/5/32-1/5)(my)>~Y/s for eachi. Now it
remains to check that the sequeno®) (has the required properties. It tends to infinity
sincem > 3C(n;)S. Also each ballB; c X is least-volume, so there is a constant
such thatm < D(ny)s for all i.t Thenmy,1/my < (D/C)(ni;1/ni)$, which is bounded.
Now Remark 2.limplies thatd®tD(x) »= x2-1/s, o

We are now in a position to proveheorem D

Proof of Theorem D Fix r, P, andq, let s(¢) = géﬁtl()gfl‘;, and letG, be the group

291G p x Z*. (Orlets(t) = £} andG, = £9717Z2 x Z*.) We verify by induction

on /¢ the following statements foB;, :
(1) M) < CED for all (q+ ¢ + 1)—manifoldsM and some constar@ > 0,
2) §40(x) = x¥) and
(3) 6@+ (x) has embedded representatives.

The first two statements together impl{it9(x) ~ xX9

If ¢ =0 then Q) follows from Theorem 7.2andLemma 7.4 StatementZ) holds by
Theorem Cand we have already observed tt@tHolds for these groups.

For¢ > 0 note firstthas(¢) = 2—1/s(¢—1). Then statementj holds byTheorem 8.1
and property 1) of G,_1. Proposition 8.6mplies ) and @) by properties 1)—(3) of
Gy_1. O

'Here we are using the upper bound ﬁ@?(x).
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