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1. INTRODUCTION

1.1. Our result. Hyperbolic groups are algorithmically tractable (theirrdi@nd conju-
gacy problems are straight—forward) and are charactebbigadree—like property that geo-
desic triangles in their Cayley graphs are close to trip6d8][ The purpose of this article
is to show that none—the—less some harbour extreme wildmi#isis their subgroups—
their finite—rank free subgroups, even. We prove (the teofogy is explained below):

Theorem 1.1. There are hyperbolic groups, for all k > 1 with free rank<k + 18) sub-
groupsAg whose distortion satisfieBist/r\kk > A«—that is, grows at least like the k—th of
Ackermann’s functions.

A distortion functionDistﬁ measures the degree to which a subgrbug G folds in on

itself within G by comparing the intrinsic word metric dth with the extrinsic word metric
inherited fromG. Supposes andT are finite generating sets f@& andH, respectively.
Then

Dist5(n) := max{ dr(L1,g) | g€ Hwithds(1,g)<n}.

Up to the following equivalence, capturing qualitative @@mnent of growth rates, D&t
does not depend dd andT. For f,g : N — N, we write f < g when there exist€ > 0
such thatf(n) < Cg(Cn+ C) + Cn+ C for all n. Definef ~ gwhenf < gandg < f.

Ackermann’sA, : N — N are a family of fast—growing functions defined recursively:
Ao(n) = n+2forn>0,
{O fork=1

Ad0) 1 fork>2,
and Ag1(n+1) = A(Ak1(n)) fork,n> 0.

In particular,A;(n) = 2n, Ay(n) = 2" andAg(n) is then—fold iterated power of 2. They are
representatives of the successive levels of the Grzedotieyarchy of primitive recursive
functions—see, for examplel §.
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1.2. The organisation of this article and an outline of our approach. Our groupsl'y
are elaborations of theydra groups

Gk = (ar,....at | tlat = ay, tat = aa_y (Vi > 1))

explored by the second and third authors&h [TheseGy are CAT(0), free—by—cyclic,
biautomatic, and can be presented with only one relator,yatdhe subgroupsl :=
(aat, ..., &ty are free of rankk and their distortion grows like thie-th of Ackermann’s
functions: Disflt ~ Ay

This extreme distortion stems from a phenomenon which caeberibed as a re—-imagining
of Hercules’ battle with the Lernaean Hydra.hidrais a positive wordv on the alphabet
a1, a, .... Hercules removes the first letter and then the creaturenezgtes in that each
remaininga; with i > 1 becomes;a_1. (Each remainingy is undfected.) This repeats
and Hercules triumphs when the hydra is reduced to the emptgl & The number of
steps is denote@#{(w). (Each step encompasses the removal of the first letterterd t
regeneration.) For examplg{(a,®) = 7:

a’ — (azal)z - aqaa? - aa® - a4’ - a’ - a4 - e

In [6] it is shown that Hercules will be victorious whatever hytiefaces, but the number
of strikes it takes can be huge: the functiotg defined byHy(n) = H(a"), grow like
Ackermann’s functionsHy =~ Ax.

The groupGy is not hyperbolic because it has the subgréaipt) = Z2. We obtainly by
combiningGg with another free—by—cyclic group, which is hyperbolicsinch a way that
the hydra phenomenon persistgin but the troublesome “Euclidean” relation$a;t = a;
are replaced by something “hyperbolic.”

In Section2 we will give two presentation®, and Qx for I'y and will prove they are
equivalent.Py is well suited to proving hyperbolicity: the associated [égy2—complex
will be shown in Sectior8 to contan no isometrically embedded copieRéfand so is
hyperbolic by the Flat Plane Theorer@y placeslk in a class of free—by—cyclic groups
which we show in Sectiod (for k > 2) contain free subgroups of raklk 18 and distortion
> Ax. (Inthe cask = 1, Theoreni.lis elementary: tak€; to be a free group and; to
bel"l.)

1.3. Background. Other heavily distorted free subgroups of hyperbolic gsdugve been
exhibited by Mitra [L2]: for all k, he gives an example with a free subgroup of distortion
like ak—fold iterated exponential function and, more extreme xamgle where the num-
ber of iterations grows like log. Barnard, the first author and Dani developed Mitra’s
constructions into more explicit examples that are also GAJ [3]. We are not aware of
any example of a hyperbolic group with a finite—rank free sabp of distortion exceed-
ing that of our examples. Indeed, we do not know of a hypechgroup with afinitely
presentedsubgroup of greater distortion. The Rips constructionjiagpo a finitely pre-
sentable group with unsolvable word problem yields a hyplélgin fact, C’(1/6) small—
cancellation) grouf® with a finitely generated subgroipsuch that Dis{ is not bounded
above by any recursive function, but thééare not finitely presentable. (Sek §3.4], [7,
Corollary 8.2], B, §3, 3K%] and [14].)

Whilst we will not call on it in this paper (as we will give theanslation between the pre-
sentationdx and Qx explicitly), a result that lies behind how we came to our egles is
that if a 2—complex admits aB'-valued Morse function all of whose ascending and de-
scending links are trees, then its fundamental group is-frgecyclic P]. [The ascending
link for our examples is visible in Figuizas the subgraph made up of all edges connecting
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pairs of negative vertices. The descending is that made ajp efiges connecting pairs of
positive vertices. Both are trees.]

1.4. Towards an upper bound on distortion. It seems likely that Di:;r\tk =~ A, butwe do
not ofer a proof that Di§\tk < A«. The proof that Diﬁt < A« in [6] may guide a proof

that Disf\kk < Ay, but that proof is technical and how to carry it over to E,:\Ykisis not readily
apparent. We are content to present here just the lower haumdh we believe is the
more significant.

1.5. Height and quasiconvexity. A finitely generated subgroup of a finitely generated
groupG is quasiconvexvhen Disf;(n) < Cnfor some constar€. An infinite subgrougH
of a groupG hasinfinite heightwhen, for alln, there existy, . . ., g, such thaf\; g "*Hg;
is infinite andHg; # Hg; forall i # j.

As Ay < T, fork > 2, are new examples of non—quasiconvex finitely presentegkeups
of hyperbolic groups, they are test cases for the questtdbwted to Swarup in13: if a
finitely presented subgrouy of a hyperbolic grouis hasfinite heightis H quasiconvex
in G? (We thank Ilya Kapovich for drawing our attention to this.)

Our Ak < Ty do not resolve Swarup’s question as they have infinite héigtatl k > 1. We
explain this using the notation of Sectidnlt follows from Propositiord.8thatt' € Ay if
and only ifi = 0. SoAkt' # Agt! foralli # j. And N>, t7'At' is infinite since the rank—
free group(by, . .., by) is a subgroup of " At for all i.

Acknowledgement. We thank an anonymous referee for a careful reading.

2. OUR EXAMPLES
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Ficure 1. The defining relations of the presentatnfor I's displayed
as three LOTs and two 2—cells.

2.1. A CAT (0) presentation for I'y. This presentatioy is well suited to establishing
hyperbolicity (see SectioB):

generators: a1,...,Q;, P1,---,08 Vi,--.,Y8, O, T,
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relations: .
@i Lra; ai1 (L<i<Kk),

BB = P (1< i <7), BstBs™t = P,
Yitoyi = yier (L<i<7), yeoyst = y1
v3fs = PB3ys, aiyiT = Ty701.

It is convenient to encodiég as shown in Figuré (which displays the cade= 6). Each
edge in the three labelled oriented trele®{s—see 10]) encodes a commutator relation—
an edge labellegl from a vertex labellec to a vertex labelled corresponds to a relation
y xy = z. The square and hexagonal 2—cells represent the remaiminglationsys8s =
Bays andayyit = ty7a;.

If one removes the; and all the relations in which they appear frén then one essen-
tially gets groups studied by Mecham & Muckerjee Ii]l These, in turn, are built from
two copies of groups studied by Barnard and the first authf]in

2.2. A presentation of I' as a free—by—cyclic group.This presentatioQy has:

generators: ag,...,a, b1,...,bg, C1,...,Cg, d, £,

relations:
trat = 6(a) 0<i<k tlct = dy(cs) y(a) y(cs) tdt  (1<i<8),
tiht = ¢(b) 1<i<8, tdt = ¢?(bs) ™t d y(cscs™) p(bs),

wheref, ¢ andy are defined by

ua,v  i=0,
6(a) = | a i=1,
aa-_1 1l<ic<k
o)) = (bi---by) by tbg (1<i<8),
y(c) = (G---cg)ciles (1<i<8),
and

u

e M tdy(cs) 1,

v = t® Dy cs)td etk

Lemma 2.1. Q presents a free—by—cyclic group
F(ao,al,...,ak, bl,...,bg, C1,...,Cg, d) WA

where thez—factor is(t) and t acts as an automorphism.

Proof. First, note:
(i) uandv represent elements of the subgrdbg ..., bg, ci,...,Cg, d), and
(i) ¢ andy define automorphisms (b, ..., bg) andF(cy, ..., cg), respectively, as
would 6 for F(ay, . . ., ax) weref(ap) equal toa; rather tharuav.

The action ot by conjugation on

F(ag,ag,...,a by,...,bs, C1,...,Cg d)



HYPERBOLIC HYDRA 5

apparent in the presentati@j is an automorphism because, as we will explain, the fol-
lowing is a sequence of free bases:
(ag,a1,...,a, bi,...,bs, C1,...,Cg, d)
@ (ar, t tat, ..., t eyt by,...,bg, C1,...,Cq, d)
@ (ttaot, t™at, ..., t 7 at, by,...,bg, C1,...,Cq, d)
St lagt, tlagt, .. tlat, tibat,. . tibgt, w(C),..., w(ca), d)
9 @ tagt tlat, ..., tlayt, tbgt,. .. tibgt, w(C). ..., ¥(Ce). dy(csca )

5
9 (tYagt, tragt, ..., tlayt, t7lbat, ...t bgt, ticht, ..., t  cat, dy(Cscs™d))

—

6
9 (tYagt, tragt, ..., tlat, tibat, ...t bgt, ticht, ..., t cgt, t1dl).

This is because (13;,t ast, ..., t"tact is a free basis foF (ap, ..., ay) as per (i) above;
(2) tagt = uayv, which is equivalent via transvectionsag by (i); (3) follows from (ii);
(4) is via transvections; (5) conjugation bycs) > d* = y(cs) L y(csca ™) y(csca ™)t dt
is first conjugation byy(cs)~* y(cscz™1), which is an automorphism d¥(cy, . . ., Cg), and
then byy(cscs™)~1d™1; and (6) is via transvections @stbyt, ..., t"tbgt are a free basis
for F(by, ..., bg) and¢?(bs)™%, ¢(b%) € F(by, ..., bg). O

The subgroup\y of Theoreml.1will be
(aot, ..., at, bl,...,bg, C1,...,Cg, d)

2.3. The equivalence of the presentationsWe will prove:

Proposition 2.2. Py and Q present the same groups.

As a first step we establish:
Lemma 2.3. Mappingr ~ t™ andg; ~ t~1b; for 1 < i < 8 defines an isomorphism

(B BeT | B itBi = Bur (L<i<7), PBgBe™ = B1)
— F(by,...,bg) >4 Z = (by,...,bg,t | 1ot = ¢(by) (L<i<8)).

Proof. The given map translates the relatighs'zs, = 8i,1 (L <i < 7) andBstB8s ™ = 1
to the family

t bt = bt bt (1<i<7)
tflbgt = bIlbg,

which is equivalent ta~bit = ¢(by) (L <i <8). o

Let P, andQ, be the presentation obtained frdtandQx by removing all the generators
a; anda;, respecively, and all the relations in which they occur.

Lemma 2.4. The groups presented by Bnd @ are isomorphic via

Tt Bty (1<i<8),
o s yi - s (1<i<8),

where s= tdy(cs).
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Proof. As per Lemma2.3, translategss, .. .,Bs, v and associated relations I, . . ., bg, t
andys, ..., ys, o and associated relationsag ..., Cg, S.
The given map converts the relatipgBs = B3ys to
S_103t_1b5 = t_lb38_105.
This rearranges as
tthsc syt = cz7ls
and then as
sttt s(s sty t(t b M) = S(sTies ),
which is equivalent to
¢(bs) ™! sy(cs) Mtp(bs) ™t = sy(cs)
and so to
7 sy(cs) 't = t7 ¢(bs) " sy(cs) " (ba).
So, ass=tdy(cs),
thdt = t7¢(bs) " tdy(cs) y(cs) ™ 4(ba),
which gives
thdt = ¢%(bs) T dy(cscs ™) ¢(bs)
as perQ,. Next, ass = tdy(cs), the relations ¢ s = ¥/(c) is equivalent to
et = dy(cs) y(c) y(cs) Hd™t
as perqQ,. O

Inductively define words; andv; for i > 0 by

U = ax, Uis1 utttuy (i >0),
Vo = a  Vis = Vitthvt (i>0)

The following observation fromg] can be proved by inducting dn

Lemma 2.5. On substituting an jafor eachay in u;, the words yand t~1vit™' become
freely equal for all i> 1.

Proof of Propositior2.2 By Lemmaz2.4there is a sequence of Tietze moves carrying the
subpresentatioR; of P to Q, and the remaining relations (those involving thgto

(IlS_lClt_l = '[_13_107(11, a’i_lt_la’i =aj.1, 1<i<k
A sequence of Tietze moves eliminatiag, ..., ax_1 transforms this family to the single
relation
u1s ot = tistou .

Now substitute amy for eachay. Then, by Lemma&.5, this relation is equivalent to

(tk—ZVk_lt—(k—l)) S—lclt—l — t—ls—lc7 (tk_2Vk_1t_(k_l)),
which becomes

tveat = (€Yo st vy (TE Vst
on conjugating by*"* and rearranging. A sequence of Tietze moves introduaing . . .,
a; expands this to the family

tlagt = & Ve, st gy -k Vgl k1) tlat=aa_y, 1<i<k
The first of these relations becomie$ast = ag when we introducey together with the

new relation
ap = t &g, Teflg k- Dgle -l
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which becomesagt = ua;v on conjugating byt and eliminating thes and s using
s=tdy(cs). O

3. HyperBoLICITY

We establish hyperbolicity using techniques employe@japd [11].

Consider the presentation 2—compl€x for P, assembled from Euclidean unit—squares
associated to each of the defining relations with the singéegtion ofa1yit = ty7a1

for which we use a Euclidean hexagon made from one unit—scgad two equilateral
triangles as shown in Figute

+ + +
(l4 (Zs

Ficure 2. The link of the vertex in the presentation 2—complex assoc
ated to the presentatid®y for I's given in Sectior?. The two grey edges
have lengthr/3, the four green edges have lengtty6, and all other
edges have lengtty/2.

The link in the casé& = 6 is shown in Figur@. All edges have length/2 apart from the
edgesr*—a; andr™—a; (shown in grey), which have lengtty3, and the edges from
Yi—1, y3—aj, a;—y;, andr*—y7 (shown in green), which have length/%. Inspect-
ing the link we see that any simple loop in the graph has leagikeast 2 (separately
considering the cases of monochrome and multicolouredisitopps in Figurel helps to
check this)—that is, for ak > 1, the link islarge. SoKy satisfies thdink condition(see
[5]) and its universal cove is therefore a CAT(0)—space.

To establish thaFy is hyperbolic we will show thaKy contains no subspace isometric to
[E? and then appeal to the Flat Plane Theoren#p8]. The link of a vertex in any isometric
copy of E2 in Ky would appear as a simple loop of length i the link. But inspecting
the link, we find that no edges of lengti3 or 57/6 (the grey and green edges) occur in
a simple loop of length2 Next one can check the edggs—g;, y;—05, vs—»B5 and
y2s—P¢ (the brown edges in the figure) do not occur in a simple loogwndth Z. Then it
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becomes evident that edges occurring in simple loops othePgare precisely the edges
TT—a;, T—aj (2<i<Kk),
B, T—B (1<i<7), T —Bg, T —04,
ot—y, oT—y7 (1<i<7), ot—yg, oT—vj.

So every corner of every 2—cell in an isometrically embedutgny of E2 must give rise to

one of the edges in this list. But, looking at the definingtietes, we see that no 2—cell in
Ky has this property. Therefore there are no sBhand sd’y is hyperbolic.

4. FREENESS AND DISTORTION

4.1. Afamily of free—by—cyclic groups. Fix an integet > 1, wordsu andvonby, ..., by,
and an automorphisghof F(by,...,b). Then, fork > 1, define

Yy = F(ag,...,axb1,....0) >~ 2

whered is the automorphism d¥(ay, . .., a, b, .. ., b)) whose restriction té(bs, ..., b))
is¢ and

ugygv =0,

0(a) = < ag i=1,

aa_1 l<i<k
Lett denote a generator of thie-factor, sat~a;t = 6(a;) andt=tb;t = 4(b;) for all i and .
The presentatioy in Section2.2 showsl'y is an example of such‘H.
Our aim in the remainder of this section is to establish:
Proposition 4.1. The subgroup

Ak = <a0t7"'7akt7blv"'7b|>
of ¥y is free of rank k+ | + 1 and Dist;*\’t > Ak

4.2. Towards a lower bound on distortion. In what follows, when, for a wordi =
uag,...,ax by,....b), we refer tod' (u), we mean the freely reduced word that equals
() inF(ag,...,akb1,..., ).

The extreme distortion in the hydra groups 6f temmed from the battle between Her-
cules and the hydra that we described in SeclioWhen studying¥y we will need the
following more elaborate version of that battle hfdrais now a word on

ag,ai,...,axby,....b

in which thea; only appear with positive exponents. As before, Herculds$ig hydra
by removing the first letter. But in this version, the hydrdyoregenerates after agm is
removed, and that regeneration is: each remaitaliirzaydb,»il becomed®(a;) anda(bjﬂ),
respectively. Again, we consider Hercules victorious if,sofficient repetition, the hydra
is reduced to the empty word.

Reprising the example from SectidnHercules defeats,® as follows:
a° - (2a)’ — avdad — aaaUayv — aouayve(u)agd(v)
— af(V)P(U)uave? (V) — acd(V)ec(v) — .

—here, the steps in which Hercules removes are not shown; the arrows indicate the
progression from when aa is about to be removed to when amext appears at the front
of the word or the hydra becomes the empty word.
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The salient point is thaiy and theb; play no essential role in this battle; if we removed all
b; and replaced aky by a;, we would have a battle of the original form. Thus we have the
following lemma. [Recall thai{(u) denotes the duration of the battle (of the original type
from Sectionl and [6]) against the hydra.]

Lemma 4.2. Hercules wins against all hydra w and, in the battle, the nandf times he
removes angequalsH (W) whereW is the word obtained from w by removing ajfband
replacing all g by &.

Consideration of the original battle between Hercules &edydra led to the result that,
for all k,n > 1, there is a positive wordy,, = uUxn(ast,...,akt) of length Hy(n) that
equalsa "t ™ in G,. (This is Lemma 5.1 inq].) The reason is that the pairingfof a
t with an initial & in a positive word oray, . . ., a corresponds to a decapitation, and the
conjugation byt that moves that into place from the right—hand end causegeneration
for the remainder of the word. For exampt&(3) = 7 and

adt! = (ast) tlaltt® = (at) (apa)?t® = (ast)(ast) t™tayaant t°

= - = (at)(agt)(ast)(azt)(ast)(ast)(ast) = Upa.
In the corresponding calculation f&fy, only thea; get paired witht, and on each of the

Hy(n) times that happens, the subsequent conjugatidrchy increase length by a factor
C which depends only oa, £(u) and£(v). So:

Lemma 4.3. There exists C> 0 such that for all kn > 1, there is a wordlx, =

Okn(@ot, . .., at, by, ..., 1) that equals g't"%™ in ¥, and has the properties that

Hi() < () < cHdMp
and all the(a;t) it contains have positive exponents.

This and our next two lemmas will be components of a caloutetinat will yield Propo-
sition 4.6 (the analogue of Proposition 5.2 ifi]], which will be the key to establishing a
lower bound on the distortion ofy in ¥y.

A simple calculation yields:
Lemma 4.4. t " Mg;t™1 = 7, in ¥, for all m > 1 where

apt form=1
Tm = {¢™2(U) - p2(U)U (at) G(V)P3(V) - - - o™ (V) for even ne 2
P 2(U) - - - 3 (U)p(U) (Aot) P2(V)P*(V) - - 9™ (V) for odd m> 2.

This combines with
t—l(alt—l)n _ (t_laltz) (t‘3a1t4) (t‘5a1t6) o (tl—Znalth)t—Zn—l
to give:
Lemma 4.5. There is a constant G 0, depending only om, £(u) and£(v), such that for

alln > 0, there is a word y = Vn(aot, by, . .., 1) such that t*(a;t™)" = v,t=2"1 in Py, the
number of(apt) contained in y is n and all have positive exponent, ang (v,) < C".

Proposition 4.6. For all k > 2 and n > 1, there is a reduced word of length at least
2H(n) + 30n at, ast, . .., at, by, ..., by, that equals gdlasta;a,ta, ™ in Wy.

Proof. After rewriting the relatiort‘ast = a,a; asa, ta, = ta; %, we seea, 1t Ma, =
(ta;"H)M S0
a"ay = Oknap(tag )~
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for Ok as in Lemmad.3 This gives the first of the equalities
alagtagay ta " = Ok nag(tay ) M Mtay (tay )M May 1oy 7t
= Oin(azt) t (tay ) " Mtay (tag )"t (agt) i
O n(@zt) Vit 24O gy 4Oy, 07T (agt) MOyt
O n(@2t) Verg ) T2y Vit (@) Hien ™

The second is a free equality and the third and fourth areéegijans of Lemmad.5and
4.4, respectively.

This calculation arrives at aword @gt, ayt, . . ., at, by, . . ., by, that equalsy"a ta;a,a, ™"
in k. This word may not be freely reduced, but if we delete allifié it contains, replace
all ap** by a;*%, and then freely reduce (i.e. cancel away aft)¢'(ajt)™ subwords), we
getukn (azt) (art) (ast)~* ugn %, which has length 24 (n) + 3. o

4.3. Freeness and rank. The result of this section is:

Proposition 4.7. The subgroup\ is free of rank k+ | + 1.

It will be convenient to prove more. In the special case wherepresents the identity,
the following proposition tells us that there are no nomdtfirelations betweeaqt, .. .,
at, by, ..., b and so establishes PropositiiT.

Proposition 4.8. If w = w(aot, ..., akt, by, ..., by) represents an element of the subgroup
(ty in ¥y, then w freely equals the empty word.

We begin with an observation on how the grodfysnest.

Lemma 4.9. For 1 < i <k, the canonical homomorphist — W is an inclusion.

Proof. The free—by—cyclic normal forms—a reduced wordsgn . ., a, by, ..., b times a
power oft—of an element o¥; and its image in¥y are the same. O

We will prove Propositiord.8 by induction, but first we give a corollary which will be
useful in the induction step. We emphasise that when we sdy(#t, . . ., akt, b, ..., )

is freely reducedn the following, we mean that there are ratf*'(at)** or b,—ilbﬁl
subwords.

Corollary 4.10. Supposefaot,...,at, by,...,h) is a freely reduced word equalling®
in ¥ where se Z andV = ¥(ay, ..., ax b1, ..., by) is aword in which all the athat occur
have positive exponents. Then all {lagt) in v have positive exponents.

Proof. When played out againg(dy, . . ., a, bi, . .., b), the hydra battle described prior to
Lemmad4.2gives aword’ = V/(agt, ..., at, by, ..., b) and an integes’ such thayv’ = Ut°

in Wx. Moreover, the exponents of all that) in v/ are positive. Nowy™ v’ € (t) since

¥ = vts = vt~%, and sov andV are freely equal by Propositioh8 Therefore the
exponents of all thegt) in v are positive. O

Proof of Propositio.8 We induct onk. For the base case &f= 1, notice that defining
ao = agt anda; := ayt, we can transform the presentation

(ag,a1, by, ..., byt | thagt = uagv, tayt = ag, t7bjt = ¢(b;) Vj)
for ¥, to
(3,8, by,.... bt | At = uaip(v), t™1ast = o, t™ byt = ¢(by) V),
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which is an alternative means of expressifigas a free—by—cyclic group from which the
result is evident.

For the induction step, we consider a freely reduced word w(agt, . .., at, by, ..., by)
representing an element @j in ¥, wherek > 2. If no (axt)*! are present inv we can
deduce from the induction hypothesis and Lem#r@ithatw freely reduces to the empty
word. For the remainder of our proof we suppose therea®{ present, and we seek a
contradiction.

Consider shfiling thet* to the start ofv using the defining relations—replacing eagh
andb; passed by & with 6*1(a;) andé**(b;), respectively. The result will be a powertof
times aword oray, .. ., a, by, . . ., by which freely reduces to the empty word. Such,igo

ay are created or destroyed in this process offing thet*. So there is some expression
wo(axt)*tu(act)*w; for w such thatu = u(agt, . . ., ae_1t, by, . .., b)) and thea,*! anda,™*

in the @kt)*! and @t)™ buttressingl cancel after the shiiing and free reduction.

We will address first the case = wy(axt) ‘u(at)ws. Break down the shiling process
by first shuffling thet*! out ofwp, u andw;, and then carrying the resulting powers to the
front of the word:

W= Wo (ad) Fu(@t)wi — 10 Wo (at) "t O (axt) t iy
N tr0+r+r1 0r+r1 (WO) 9r+r1+l(ak—l) 0r1+1(0) 9r1+l(ak) Wl
whererg,r,r, € Z and

WO = Wo(a()’""ak»bl»"'»bl)»
a0 = 0(ag,...,ax-1,b1,...,b),
Wl =wl(a0""’ak9bl9"'7b|)

are words such thafewy = wo, t'0 = u andt™Ww; = wy in ¥x. When we expand " (a,™?)
ande*1(a) as words oray, . . ., a, the former ends with aa,~* which must cancel with
the ay at the start of the latter. S&'*1(0)), and thereforai,"freely equal the empty word.
Sourepresents an element@§ and, by induction hypothesis, freely reduces to the empty
word, contrary to the initial assumption thafaot, . . . akt, by, . . ., by) is reduced.

In the casev = wo(axt)u(axt)~*wy, the shdfling process is

W= Wo(ad)u@d) twi — tOWo (at)t' O (ad) iy
- tl'0+l'+l'1 0I’+I’1 (WO) 0I’+I’1(ak) 0I’1*1(0) grl(ak*l) V\"Il

wheret™™Wwy = wg, t'0 = u andt'Ww; = wy in ¥, as before. The first and last letters of
6"+ (ay) 6~ 1(0) 0" (a 1) area, anday~ which cancel, so this subword must freely reduce
to the empty word. S@é'(ax) 6-2(0) a,* also freely reduces to the empty word—that is,
6"+1(ay) O freely equalsyay_1.

If r = O then this says that freely equals the empty word and, as before, we have a
contradiction. Suppose > 0. Thenu™? = (axax_1)"*6"**(ax) would be a positive word
onay,...,aw, were we to remove all thb;*%,. .., b*! it contains. So, asg™*t" = u™?,
Corollary4.10applies and tells us that* would be a positive word were we to remove
all theb;*%, ..., by*t it contains. But is the exponent sum of thedt)*%, ..., (a_1t)** in

u, and so we deduce the contradictiog 0. Finally we note that the case< 0 also leads

to a contradiction because if we replagdy w it becomes the cage> 0. O

4.4. Conclusion. We deduce from Propositigh8that the word posited in Propositidnb
is theuniquereduced word oragt, . . ., at, by, . .., by that equalsa"asta;a, ta, ™" in W.
This establishes that Di@k‘tz Hy for all k > 2. So, by Proposition 1.2 ir6], which says



12 N. BRADY, W. DISON AND T.R. RILEY

thatHy, ~ A for all k > 1, we have Dig{fﬁ > A for all k > 2. Added to Propositiod.7,
this completes the proof of Propositidti.

Propositiord.1applies to the subgroup
<a0t""7akt’ bl,~-~,b8, Cl,...,C8, d)

of Tk (presented afx of Section2) and so, as we establishéq to be hyperbolic in
Section3, Theoreml.1lis proved.
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