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Abstract. In this note we prove that every closed orientable 3-manifold
has a triangulation in which each edge has degree 4, 5 or 6.

1. Introduction

All closed, orientable 3-manifolds can be constructed in a number of
seemingly simple and elegant ways. Examples include Heegaard diagrams,
branching over links in the 3-sphere, doing 0/1-Dehn fillings on a cover of
the figure 8 knot complement [3], or gluing cubes together so that each edge
has degree 3, 4, or 5 (see [1]). Recall that the degree of an edge e in a
3-complex is the number of closed 3-cells which contain e. In this article we
add a new construction to this list: gluing tetrahedra together so that each
edge has degree 4, 5, or 6. Our primary motivation for this research comes
from recent work on triangulated 3-manifolds with restricted edge degrees.
See [2] and [5].

As in the construction of Cooper and Thurston, our construction relies
heavily on the universality of the figure 8 knot complement. Specifically, we
give explicit triangulations of a solid torus

�
1× D2, a thickened torus T 2 ×

[0, 1], and the complement of the figure 8 knot. Each of these triangulations
will be acceptable in the following sense.

Definition 1.1 (Acceptable triangulations). Let M be an triangulated, ori-
entable 3-manifold, possibly with boundary. If each interior edge has degree
4, 5, or 6 and every boundary edge has degree 2 or 3, then we will say that
the triangulation of M is acceptable.

Notice that identifying two manifolds with acceptable triangulations along
boundary components will produce a new manifold with an acceptable tri-
angulation. Gluing covers of these three constructions together will prove
our main result:

Theorem 1.2. Every closed orientable 3-manifold M has an acceptable

triangulation. In particular, there exists a triangulation of M in which every

edge has degree 4, 5 or 6.
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2. Solid Tori

In this section we describe an explicit triangulation the solid torus
�

1×D2,
but first we need to establish some notation for marked triangulated tori.

Definition 2.1 (Standard triangulation). Let � [ω] = {a + bω | a, b ∈ � } ⊂�
be the lattice in the complex plane where ω is the cube-root of unity,

1

2
+

√
3

2
i. The standard triangulation of

�
will be the triangulation where

the vertices are the elements of � [ω] and the edges connect vertices when
they are distance 1 apart. See Figure 1.
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Figure 1. � [ω].

Definition 2.2 ((u, v)-torus). Recall that a marked torus is a torus T to-
gether with an ordered pair of elements (a, b) which generate π1(T ), and let
T be a marked, triangulated torus whose universal cover is explicitly identi-

fied with the standard triangulation of
�

by a map f : T̃ → �
. The elements

a and b will act on this standard triangulation by deck transformations and,
in particular, they will correspond to maps z 7→ z + u and z 7→ z + v where
u and v are elements of � [ω]. A marked triangulated torus with an explicit
identification of this type will be called a (u, v)-torus.

Definition 2.3 (Triangular columns). A triangular column is constructed as
follows. The vertices are labeled by the integers, and every four consecutive
integers form the vertices of a tetrahedron. A concrete realization of this
complex in

� × � can be obtained by assigning the label 3k to (0, 3k), 3k+1 to
(1, 3k+1), and 3k+2 to (ω, 3k+2). A triangular column is shown in Figure 2
where the real direction is horizontal. Note that the edges in a triangular
column have degree 1 if its vertex labels differ by exactly 3, and degree 2
otherwise. Moreover, the degree 2 edges form three spirals in this realization.
There is one spiral whose consecutive vertex labels differ by 1, and there are
two parallel spirals whose consecutive vertex labels differ by 2. The reader
should note that this column in

� × � has slightly different combinatorial
properties than its mirror image. In particular, the spiral whose consecutive
vertex labels differ by 1 will spiral in the other direction in its mirror image.
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We will call the two types of columns left-handed columns and right-handed

columns depending on the direction of the spiral whose consecutive vertex
labels differ by 1. The distinction will be important when we start to glue
columns together.

Definition 2.4 (Triangular rings). If ` is a positive integer then there is a
translation of a triangular column which sends vertex k to k + 3 ∗ `. Quoti-
enting by this translation gives a solid torus which we will call a triangular

ring of length `. As with columns, there are left-handed and right-handed

rings. It is easy to see that the boundary of a ring marked by its meridian
and longitude is a (3ω − 1, `)-torus, that all edges are boundary edges, and
that all edges have degree 2 except for three circles of edges with degree 1
which run along the longitude. These three circles will be called the edges of

the ring. Moreover, the edges of the ring cut the boundary torus into three
annuli with identical combinatorial patterns. We will call these the faces of

the ring. Since there is a unique combinatorial pattern on the face of a ring
of length `, any two faces on distinct rings of length ` can be identified in
an essentially unique way.

-11 -8 -5 -2 1 4 7 10 13 16

-9 -6 -3 0 3 6 9 12 15 18

-10 -7 -4 -1 2 5 8 11 14 17

Figure 2. A right-handed triangular column.

Definition 2.5 (Strips). A strip S of length ` is the solid torus which results
when a face of a triangular ring of length ` is attached to a face of its mirror
image. The boundary of the strip marked by its meridian and longitude is
a (2

√
−3, `)-torus, every interior edge has degree 4, and all boundary edges

are degree 2 except for two circles of edges with degree 1 which run along the
longitude. As in the case of rings we will call these two circles the edges of

the strip. The edges of the strip cut the boundary torus into two annuli with
common boundaries – called the sides of the strip – and there is an obvious
identification between these sides which fixes the edges and preserves the
combinatorial structures of the sides. Notice that this would not be the
case if we glued two left-handed rings together or two right-handed rings.
Because of this property, attaching a strip to the boundary of a 3-manifold
along its side will not change the combinatorial pattern of the boundary.

Lemma 2.6 (Solid tori). If k and ` are arbitrary positive integers, there is

an acceptable triangulation of
�

1 × D2 where the boundary torus marked by

its meridian and longitude is a (3k
√
−3, `)-torus.

Proof. Glue a number of triangular rings of length ` together along their
faces so that its cross section looks like the portion of the standard triangu-
lation of

�
bounded by 0, 2k, k + kω and kω. The cross section for k = 4
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is shown in Figure 3. Then glue this construction to its mirror image so
that the faces corresponding to the line from 0 to 2k in the cross section
are the faces that are glued to their mirror images. Because we are using
the mirror image of the construction, when the longitude is identified with
the real number `, the meridian will be purely imaginary. In particular, the
boundary torus marked by its meridian and longitude will be a (3k

√
−3, `)-

torus. �

0
4

8

4ω 4 + 4ω

Figure 3. Cross-section of half the solid torus constructed
in Lemma 2.6 when k = 4.

3. Thickened tori

In this section we describe a triangulation of the thickened torus T 2×[0, 1].
Before stating its properties, we should note that if T 2 is a marked torus,
then T 2×{0} and T 2×{1} inherit markings from the obvious identification
of their fundmental groups.

Lemma 3.1 (Thickened-torus). If T 2 is a marked torus and k and ` are

positive integers, then there is an acceptable triangulation of T2×[0, 1] where

T 2 × {0} is a (k
√
−3, `)-torus and T 2 × {1} is a (k, `

√
−3)-torus.

Proof. We start by explicitly triangulating
� × [0, 1] as follows. Let � [i] =

{a + bi|a, b ∈ � } be the Gaussian integers. The vertices of the triangulation
will be V0∪V1 where V0 = {(u, 0)|u ∈ � [i]} and V1 = {(u, 0)+(1

2
+ 1

2
i, 1)|u ∈

� [i]}. There are three types of edges. The first type connect v to v + (1, 0)
and v to v + (i, 0) for each vertex v. These edges slice

� × {0} and
� × {1}

into squares. The second type connect v to v + (±1

2
+ ± 1

2
i, 1) for each

choice of sign and for each v ∈ V0. The slab
� × [0, 1] can now be viewed

as a union of square-based pyramids where each base lies in a boundary
planes. The third type of edge splits these pyramids into pairs of tetrahedra.
For each v ∈ V0 connect v to v + (1 − i, 0) and for each v ∈ V1 connect
v to v + (1 + i, 0). A topview of this construction is shown in Figure 4.
It is easy to check that this triangulation is acceptable. To complete the
construction we quotient

� × [0, 1] by the translations (z, t) 7→ (z +k +ki, t)
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and (z, t) 7→ (z + ` − `i, t), using these two deck transformations to mark
the resulting thickened torus. �

(−3 − 3i, 0) (3 − 3i, 0)

( 7

2
− 5

2
i, 1)

( 7

2
+ 7

2
i, 1)(− 5

2
+ 7

2
i, 1)

(−3 + 3i, 0)

Figure 4. A triangulation of
� × [0, 1]. The thick ‘black’

lines lie in
� × {1}, the medium ‘red’ lines in

� × {0}, and
the thin ‘blue’ lines are interior.

Corollary 3.2. If k and ` are arbitrary positive integers, there is an ac-

ceptable triangulation of
�

1 × D2 where the boundary torus marked by its

meridian and longitude is a (3k, `
√
−3)-torus.

Proof. By Lemma 2.6, there is a solid torus M marked by its meridian and
longitude whose boundary is a (3k

√
−3, `)-torus. And by Lemma 3.1, there

is a thickened marked torus whose boundary components are a (3k, `
√
−3)-

torus and a (3k
√
−3, `)-torus, respectively. Gluing the solid marked torus

to the thickened marked torus along their (3k
√
−3, `)-torus boundary com-

ponents completes the construction. The resulting triangulation remains
acceptable. �

4. Figure 8 knot

Let M8 denote the 3-manifold with boundary which is obtained by re-
moving an open tubular neighborhood of the figure 8 knot in the 3-sphere.
It is well known that M8 is homeomorphic to a cell complex consisting of
two truncated tetrahedra which are glued along their hexagonal faces and
that the boundary torus of this complex, as marked by the meridian and
longitude of the removed solid torus, is a (1, 2

√
−3)-torus. See Figure 5 for

the gluing diagram and see [4] or [6] for further details. For later reference
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we note here that the 1-skeleton of a (1, 2
√
−3)-torus consists of 6 geodesic

circles. There are 4 circles of length 1 parallel to the meridian and there is
a single circle of length 4 in each of the other two remaining directions.

In this section we create an acceptable triangulation for M8 in two stages:
we start by triangulating its “octahedral core” and then we will attach sev-
eral “curvature averaging strips”. The first step is easiest to describe by
explicitly describing how to truncate tetrahedra.

Figure 5. The gluing diagram for M8.

Definition 4.1 (Truncating tetrahedra). Let ei, i = 1, . . . , 4 be the standard
basis vectors in � 4 . One description of a 3-simplex ∆ is all the points in � 4 of
the form

∑
4

i=1
tiei with 0 ≤ ti ≤ 1. To form an ideal tetrahedron we simply

require ti < 1 for all i. Further restricting the ti-values produces truncated
tetrahedra and eventually a degenerate octahedron. More precisely let ∆s

be the portion of the 3-simplex in which each ti is at most s, s ∈ [1/2, 1).
For each s ∈ (1

2
, 1), ∆s is a truncated tetrahedron, and for s = 1

2
, ∆s is an

octahedron. See Figure 6.

Figure 6. ∆s for s = 3

4
and s = 1

2
.

Definition 4.2 (Octahedral core). Note that we can create a deformation
retraction which shrinks ∆s to ∆s′ and preserves the face structures for all
s > s′ ≥ 1

2
. Pasting these retractions together, we can define a retraction

from M8 to a complex built out of two octahedra. We call the result the
octahedral core of M8.
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Notice that the octahedral core is not quite a 3-manifold since each of
the two points corresponding to baricenters of the edges of the original ideal
tetrahedra has a neighborhood which is homeomorphic to a cone on an
annulus. Similarly, the boundary of the core is not quite a torus. As s
decreases to 1

2
and M8 retracts to its core, two pairs of points on its boundary

torus are identified. We think of this singular torus as the “boundary” of
the octahedral core. The only curves in the boundary of the core we will
consider are those which are retractions of curves in the boundary of M8,
and such a curve will be described as simple if and only if it the retraction
of a simple curve in the boundary of M8. We are now ready to triangulate
M8.

Lemma 4.3 (Figure 8 knot complement). For each integer k ≥ 3, the

figure 8 knot complement M8 has an acceptable triangulation whose boundary

torus marked by the standard meridian and longitude is a (k, 2k
√
−3)-torus.

Proof. We start with the octahedral core and we triangulate each face of
each octahedra by subdividing it so that it looks like the standard trian-
gulation

�
in the triangle bounded by 0, k and kω. In particular, every

edge of the core is subdivided into k edges and every 2-cell in the core is
subdivided into k2 small triangles. Next, we triangulate the interior of each
octahedron by coning off its triangulated boundary to its barycenter. Notice
that the ‘boundary torus’ has become a (k, 2k

√
−3)-torus as a result of the

subdivision.
Doing this subdivision to a single octahedron creates internal edges with

degrees 4 and 6 and boundary edges of degree 2. Thus in the core internal
edges have degree 4 or 6, and boundary edges have degree 2 or 4. Moreover,
the boundary edges of degree 4 arise from the edges of the original octahedra
prior to the subdivision. Thus they line up to form 6 circles, corresponding
to the 6 circles in a (1, 2

√
−3)-torus. These 6 circles form one group of 4

parallel circles, all of length k, and two circles of length 4k.
To make the triangulation acceptable we now attach a “curvature averag-

ing strip” to an annular neighborhood of each of these 6 circles. We will add
the strips in one direction at a time, so that the result looks like a traditional
apple pie crust. The process is illustrated in Figure 7. Combinatorially, the
effect of attaching such a strip is to replace an annular neighborhood of the
circle by a combinatorially identical annulus. The degree of the central circle
drops from 4 to 2, while the degree of the neighboring circles increases by
1. Since we have assumed that k ≥ 3, the edges in these neighboring circles
have degree 2 and they are distinct from each other. The degrees of the
edges which have been covered by the strip are 4, 5 or 6 since they initially
had degrees between 2 and 4 and the edges in the strip which were attached
to them all had degree 2.

When we attach the first strip, some of the other circles of edges of degree
4 will become broken circles, but the key observation is that all of the degrees
of boundary edges remain 2, 3, or 4, and the circles on either side of a
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(broken) circle of edges of degree 4 remain of degree 2. Thus when a strip
is added to cover up these edges of degree 4, no new edges of degree 4 will
be created. Finally, note that we chose k ≥ 3 so that parallel strips would
not have boundary circles in common.

Figure 7. The boundary torus as the various strips are
added. The thick ‘black’ lines represent edges with degree
4, the medium ‘red’ lines represent edges of degree 3, and
the thin ‘blue’ lines represent edges of degree 2. In this ex-
ample k = 5.

The net effect of adding all of these strips is to thicken the octahedral
core into a 3-manifold with boundary homeomorphic to M8 and to make
the resulting triangulation acceptable. In addition, the boundary torus has
remained a (k, 2k

√
−3)-torus throughout the process. �

5. Construction

Combining the previous constructions immediately yields our main result.
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Theorem 1.2. Every closed orientable 3-manifold M has an acceptable

triangulation. In particular, there exists a triangulation of M in which every

edge has degree 4, 5 or 6.

Proof. By the universality of the figure 8 knot, M can be obtained by doing
0/1 Dehn fillings of each cusp of a finite cover M ′ of the figure 8 knot
complement. By lifting the triangulation described in Lemma 4.3 (for k = 3)
through this finite cover, we get an acceptable triangulation of M ′. Let T 2 be
one of the torus cusps of M ′ marked by its meridian and longitude. Because
this is a covering map, there are positive integers k and ` such that T 2 is a
(3k, 6`

√
−3)-torus. By Corollary 3.2 there is an acceptable triangulation of

a solid torus marked by its meridian and longitude whose boundary is also
a (3k, 6`

√
−3)-torus. Attaching these two marked tori along their common

combinatorial pattern completes the 0/1 filling. The resulting triangulation
remains acceptable and filling each of the cusps in this fashion completes
the construction. �
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