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Abstract. We study the Dehn function at infinity in the mapping class group,
finding a polynomial upper bound of degree four. This is the same upper bound

that holds for arbitrary right-angled Artin groups.

Dehn functions quantify simple connectivity. That is, in a simply-connected
space, every closed curve is the boundary of some disk; the Dehn function measures
the area required to fill the curves of a given length. The growth of the Dehn
function is invariant under quasi-isometry, so one can define the Dehn function
not just for spaces, but also for groups. The Dehn function is not the only group
invariant based on a filling problem; for example, one can also define the Dehn
function at infinity, which is a quasi-isometry invariant that measures the difficulty
of filling closed curves with disks that avoid a large ball. The Dehn function at
infinity is a special case (k = 1) of the higher divergence functions Divk that were
defined for groups in [1] and serve to quantify the connectivity at infinity. In that

paper we survey some results using the growth rates of Divk to detect geometric
features of groups and spaces.

The mapping class group of a surface has quadratic Dehn function because it is
automatic, and an automatic structure provides a combing which can be used to
shrink a curve to a point using no more area than is needed in a Euclidean space
(see [6, 3]). In this note we study the Dehn function at infinity: if we impose the
additional condition that the filling of a loop avoid a large ball, must its area be
much worse than quadratic? In [1, Theorem 6.1] we addressed this question and
its higher-dimensional analogs in the case of right-angled Artin groups (RAAGs),
and we showed that loops can be filled at infinity using area at most polynomial of
degree four.

Here we show that the same result holds in mapping class groups of surfaces
of genus g ≥ 5, contributing to the growing literature comparing mapping class
groups to RAAGs. We use two key features of these mapping class groups: first,
they have presentations with short relators (due to Gervais [5]), and second, all
abelian subgroups are undistorted [4].
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1. Notation

In any space X we denote by Br(x) the ball of radius r centered at x. We will
use x0 to denote a basepoint and we often write Br for Br(x0). Any object in X
that is disjoint from Br is called r-avoidant (or often simply avoidant).

As usual, for two functions f, g : R → R we write f � g if there is a constant
A > 0 such that for all t ≥ 0,

f(t) ≤ Ag(At+A) +At+A.

Remark 1.1. Note that in Euclidean space Rd, any two points on the sphere of
radius r can be joined by an r-avoidant path of length at most πr. Also, it is an
exercise that there exists a constant c > 0 such that any r-avoidant loop of length
l in any Rd (d ≥ 3) can be filled with an r-avoidant disk of area at most cl2.

2. The Gervais presentation

For a topological surface S = Sg,b (where g is the genus and b is the number of
punctures/boundary components), we write Mod(S) for its group of orientation-
preserving diffeomorphisms up to isotopy, or mapping class group.

Our strategy for bounding the area of an efficient r-avoidant filling in Mod(S)
is based on the ideas developed in [1] for RAAGs. We begin with an efficient but
presumably non-avoidant filling and alter it, “pushing” each original 2-cell to an
avoidant 2-cell (i.e., replacing the former with the latter). These new cells are
then patched together (still avoidantly) using commuting relations to form the new
filling. Careful control of the pushing process allows us to bound the number of
2-cells in the new filling in terms of the number of 2-cells in the original filling.

In order to do this, we present Mod(S) as a quotient of a RAAG whose generators
are Dehn twists (which commute if the corresponding curves are disjoint). In a 2-
complex for such a presentation, all cells are either squares coming from the RAAG
or among finitely many types of other cells coming from the additional relators of
the mapping class group.

Squares coming from commutation relations can be replaced by avoidant squares
in a straightforward manner: we push them out radially by post-multiplying with
a high power of one of the two commuting letters. The effect of this is to translate
along a standard ray in the 2-complex. For the other types of 2-cells, we will be
able to carry out a similar pushing operation if we can find a common commuter for
all of the letters in the corresponding relator. That is, if σ is a 2-cell with boundary
labelled by the word w, and h is a generator which commutes with all letters in w,
then post-multiplying by hR results in a translated copy of σ that is far from x0.
To employ this strategy, we would like a presentation in which every generator is
a Dehn twist, and every relator w has “small support” in the following sense: the
curves corresponding to the letters appearing in w are collectively supported on a
subsurface F such that some other generator has support disjoint from F . This
generator therefore commutes with every letter in w, and can be used to push the
corresponding cell as above.

The Gervais presentation of the mapping class group (see [5]) fits the bill: this
is a finite presentation in which every relator is supported on a small subsurface
(at most a three-times-punctured torus). Compared to better-known presentations
(such as with Humphries or Lickorish generators), this will have the advantages
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Figure 1. A diagram of the Gervais curves on Sg,b. On the left
are α1, . . . , α2g+b−2 (appearing as meridians of the central torus)
and β1, . . . , βg (with β1 as the longitude of the central torus). For
every pair αi, αj , there is a corresponding curve γij ; the figure on
the right shows three of the γij . The star relations are formed by
twists around seven curves in the configuration depicted on the
right; the central curve β1 is always used. Note that each such
relation is supported on a three-times punctured torus.

provided by common commuters to offset the disadvantage of having a far larger
number of generators.

All the Gervais generators are Dehn twists supported on the collection of curves
shown in Figure 1. We call these the Gervais curves. The relations are of three
kinds: commuting, braid, and so-called star relations. Commuting relations arise
from twists around disjoint curves. The braid relations arise whenever two curves
intersect once; they have the form ABA = BAB. The star relations arise when a
collection of seven curves is in a particular topological configuration (see the right
side of Figure 1); these have the form (ABCD)3 = XY Z. If two of the twisting
curves for A,B,C,D are isotopic (say A and B), then there is a corresponding
degenerate star relation (in this case (A2CD)3 = XY ).

For this presentation of Mod(S), let X be the universal cover of the presentation
2-complex, so that its 1-skeleton is the Cayley graph. Then all of the 2-cells are
squares, hexagons, 14-gons, and 15-gons corresponding to the relators described
above.

The possible directions to push 2-cells, as well as the possible commuting rela-
tions used to patch avoidant 2-cells together, are determined by a particular abelian
subgroup of Mod(S) generated by Dehn twists around the set of curves described
in the following lemma.

Lemma 2.1 (Common commuters in the Gervais presentation). Let S be an ori-
entable surface of genus g ≥ 5 and any number b ≥ 0 of punctures. There is a set
H of g mutually disjoint Gervais curves, whose associated Dehn twists generate a
subgroup H ≤ Mod(S), with the following properties:

(1) For every relation in the Gervais presentation, there exists an element of
H whose Dehn twist commutes with every letter appearing in the relation.

(2) Any Gervais curve intersects at most two curves from H.



4 A. ABRAMS, N. BRADY, P. DANI, M. DUCHIN, AND R. YOUNG

Proof. Gervais gives his presentation in terms of three types of curves: α-curves
(separating out the topology), β-curves (mutually disjoint curves, one around each
handle, dual to some of the α-curves), and γ-curves (derived from pairs of α-curves).
(See Figure 1.) Each star relation is supported on a three-times-punctured torus,
and the relation involves three α-curves, one β-curve, and three γ-curves. One
easily verifies that the maximum number of other β-curves intersecting any of these
support curves is three, if dual to the α-curves. Thus if there are at least five β-
curves in total, one of them must be disjoint from the support curves. In this case,
the support of any commuting or braid relation clearly also misses some β-curve.
The total number of β-curves is g, the genus.

Each α-curve and each γ-curve intersects at most two β-curves, by inspection.
Now let H be the set of all β-curves. �

3. Filling loops at infinity

Let h1, . . . hg denote the Dehn twists about the β-curves, and let H denote the
subgroup 〈h1, . . . hg〉. The group H is abelian, since the β curves are disjoint.
Abelian subgroups of Mod(S) are undistorted ([4]). That is, if d is the word metric
on Mod(S) with respect to the Gervais presentation, and dH is the word metric on
H, then there is a C > 1 such that

(und) d(x, y) ≤ dH(x, y) ≤ Cd(x, y) + C.

This means that the intersection of Br and any coset of H is small:

Lemma 3.1. Let H ′ ⊂ H be generated by a subset of the β-curves. Let v ∈ Mod(S)
and let y ∈ v · H ′ be a point in v · H ′ such that d(x0, y) = d(x0, v · H ′). If Br(y)
denotes the r-ball in v ·H ′ centered at y and r ≥ 1, then

Br−d(x0,v·H′)(y) ⊂ Br ∩ v ·H ′ ⊂ B3Cr(y) .

Proof. The first inclusion follows from the triangle inequality and the fact that
d ≤ dH . For the second, suppose that z ∈ Br ∩ v ·H ′. Then by the definition of y,
we have d(x0, y) ≤ r, so d(z, y) ≤ 2r and

dv·H′(z, y) ≤ 2Cr + C ≤ 3Cr. �

So we can construct avoidant curves and disks in X from avoidant curves and
disks in H ′:

Lemma 3.2 (Avoidance in cosets). Suppose that H ′ ⊂ H is generated by a subset of
the β-curves and that H ′ has rank at least 3. There is a constant D > 0 depending
only on S such that for any v ∈ Mod(S) and any r ≥ D:

(1) Let x1, x2 ∈ v · H ′ be r-avoidant. There is an r
D -avoidant path in v · H ′

from x1 to x2 which has length at most D·dH′(x1, x2).
(2) Let γ be an r-avoidant curve in v ·H ′ of length l. There is an r

D -avoidant

disk f : D2 → v ·H ′ which fills γ and has area at most Dl2.

Proof. Let D = 5C. If d(x0, v ·H ′) > r
D , the statements are trivial, since the r

D -ball
doesn’t intersect v ·H ′.

Otherwise, by the lemma above, there is a y ∈ v ·H ′ such that

B 4r
5

(y) ⊂ Br ∩ v ·H ′

and
B r

D
∩ v ·H ′ ⊂ B 3r

5
(y)
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Figure 2. The cells σ′i are obtained by pushing the σi out of the
ball of radius r. The path γ is r/D-avoidant, and the letters in the
corresponding word all commute with f .

Since x1, x2, and γ are r-avoidant, they are outside B 4r
5

(y). Since H ′ has rank

at least 3, by Remark 1.1 there is a curve from x1 to x2 as well as a disk filling
γ which both avoid B 3r

5
(y); consequently, this curve and disk are r

D -avoidant in

Mod(S). �

Thus we can construct avoidant fillings of loops that live in flat cosets; we will
use these to build avoidant fillings of arbitrary loops.

Theorem 3.3 (Filling loops at infinity in the mapping class group). Suppose S has
genus at least 5 and any number of punctures, and let X be the Cayley 2-complex
of Mod(S). There is a constant c > 0 such that for any r, any r-avoidant loop of
length l has an r

c -avoidant filling of area ≤ cr2l2.

Proof. We start with an r-avoidant loop of length l in X. Since the Dehn function is
quadratic, there exists a (not necessarily avoidant) filling ∆ with area � l2. We use
∆ as a combinatorial model for an avoidant filling of the same loop. The new filling
is obtained by making the following replacements, which are depicted in Figures 2-3
and are described more precisely below.

Step 1 Each 2-cell of ∆ is replaced by (“pushed to”) an avoidant copy of itself.
Step 2 Each edge of ∆ is replaced by a (possibly degenerate) avoidant strip of

squares of length � r. An edge belonging to two 2-cells is replaced by a
strip connecting the two pushed copies of the cells. An edge belonging to
a single 2-cell is necessarily part of the boundary loop, and is extended to
a strip connecting the edge to the pushed copy of the cell.

Step 3 The result of the previous steps is topologically a punctured disk, with one
boundary component equal to the original loop and an additional boundary
component corresponding to each vertex in ∆. Each boundary component
of the latter kind is filled by an avoidant disk in an appropriate flat.

Step 1: Pushing 2-cells. We replace each 2-cell σ with an avoidant cell σ′. If
σ is already r-avoidant, we let σ′ = σ. Otherwise, σ is partially contained in the
ball of radius r. It corresponds to a relation in the Gervais presentation, and we
choose a common commuter hσ for the generators in this relation, whose existence
is guaranteed by Lemma 2.1.

Let R = (2r + 30)C + C. If the vertices of σ are v1, . . . vk, then v1h
R
σ , . . . , vkh

R
σ

are the vertices of a copy of σ (i.e., an isometric 2-cell), since hσ commutes with
the edge labels of σ. Denote this copy by σ′. Since σ is partially contained in the
ball of radius r and relators have length at most 15, σ′ is entirely outside the ball
of radius r + 15. Thus it is r-avoidant by undistortedness (und).

Step 2: Connecting pushed cells with strips. Consider an edge in ∆ with vertices
v and w, labeled by a Gervais generator f . Let Hf ⊂ H be the subgroup of H
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Figure 3. The edges in bold in this figure are part of the boundary
loop of ∆. Each strip is ( rD − 1)-avoidant and has length � r.

generated by the generators of H which commute with f ; this has rank at least
g − 2, where g is the genus of S, by Lemma 2.1(2).

First, we find vertices v1 and v2 corresponding to v in the pushed filling. If the
edge is shared by two 2-cells σ1 and σ2, let v1, v2 be the vertices of σ′1 and σ′2 which
correspond to v. Otherwise, the edge belongs to the boundary of ∆. If it is adjacent
to a 2-cell σ, let v1 = v and let v2 be the vertex in σ′ corresponding to v. Otherwise,
the edge is used twice in the boundary of ∆, and we can let v1 = v2 = v. In any
case, v1 and v2 are r-avoidant and are both contained in v ·Hf , and dHf

(v1, v2) � r.
By Lemma 3.2, there is a r

D -avoidant path γ in v · Hf which connects v1 to v2;

we can interpret this as a word representing v−11 v2 whose letters all commute with
f . Then there is a strip built out of squares (that is, commuting relations) whose
boundary label is the commutator [f, γ]; this strip is ( rD − 1)-avoidant and has
length � r.

Step 3: Filling in the holes. The partial filling constructed above has one bound-
ary component for each vertex of ∆ which is sufficiently close (within distance r+15)
from the basepoint. Each boundary component is a polygonal loop whose sides are
paths γ belonging to strips from the previous step (these appear as triangles in Fig-
ure 3). The number of sides of the polygon associated to v is the number of edges
incident to v in ∆. Each vertex is r-avoidant, and each side is an ( rD − 1)-avoidant
curve of length � r. Indeed, each vertex is distance at most R away from v, so any
two vertices are distance ≤ 2R apart. The entire polygon is contained in the coset
v ·H.

To fill these polygonal loops, we first subdivide each into triangular loops by
adding additional r

D -avoidant curves in v ·H between the vertices; these exist by
Lemma 3.2. The resulting triangular loops are ( rD − 1)-avoidant and have length
� r. Again by Lemma 3.2, they can be filled by ( r

D2 − 1)-avoidant disks in v ·H of

area � r2. Let ρ = 1
2D2 , so that when r is sufficiently large, r

D2 − 1 ≥ ρr.
The union of the pushed cells, strips and filled triangles above is a ρr-avoidant

filling of the boundary loop; it remains to estimate the area of this filling. Since
the area (the number of 2-cells) of ∆ is � l2, the number of vertices and edges in
∆ is � l2 as well. Each strip introduced in this construction has length (and area)
� r. Because the triangular loops lie in cosets, there is a constant M such that the
area of any of the triangle fillings above is at most Mr2. Moreover, the number
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of triangles is certainly bounded above by twice the number of edges in ∆. So the
total area of the new filling is � l2 + l2(2r) + l2(Mr2) � r2l2, as desired. �

In the language of [1], which primarily considers the case that l ∼ r, this implies
that Div1(Mod(S)) � r4. By considering the lower bound from Euclidean filling
area, we have r2 � Div1(Mod(S)). In fact there is some evidence that the true
answer is Div1(Mod(S)) ∼ r3; good candidates for hard-to-fill loops are found
in the 2-flats generated by one Dehn twist and one other mapping class that is
pseudo-Anosov on the complementary subsurface. In general, to approach higher
divergence in mapping class groups, it is natural to focus on flats generated by many
partial pseudo-Anosovs. If a boundary in such a flat has an avoidant filling, we can
project that filling to the flat. This projection must be a filling of the original
boundary, but since the projection from the mapping class group to the axis of a
pseudo-Anosov is strongly contracting [2, Theorem 4.2], the original avoidant filling
must be much larger than its projection.
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