Midterm is postponed until next Tuesday (9/27).
Thursday class I will review some questions asked by students.
Extra office hour: 9-23, 2:00pm-3:30pm.

Complex numbers and functions, Chapter 2.
Complex numbers: Definitions, two forms, algebraic operations.

Exercise 1: Find the modules of following number:
(a). \(z = (1 + 2i)^{-2} \);
(b). \(z = e^{2+4i} \).

Exercise 2: Find the real and imaginary parts of of following number:
(a). \(z = (1 + 2i)^{-2} \);
(b). \(z = e^{2+4i} \).

Complex functions: Power series, exponential functions, trigonometric functions, logarithmic functions, powers and roots.

Exercise 3: Find the real and imaginary parts of of following number:
(a). \(z = (1 + 2i)^{-2} \);
(b). \(z = e^{2+4i} \).

Exercise 4: Find all numbers \(z \) satisfies
(a). \(z^2 = 1 + \sqrt{3}i \);
(b). \(e^z = 2i \).

Fourier series, Chapter 7
Harmonic functions, periodic functions: Period, amplitude, ”orthogonal” of two harmonic functions.

Exercise 5:
(a). (Brain teaser?) If \(f(x) \) is a periodic function with period \(l \), show that \(f(x) \) is also a \(2l \) periodic function.
(b). Computer

\[
\int_{-\pi}^{\pi} e^{2x} \cdot e^{-3x} \, dx = ?
\]
Fourier series: How to find Fourier coefficients. Parseval’s theorem and applications.

Exercise 6:

(a). Find Fourier series for

\[f(x) = \begin{cases}
-1, & -l \leq x < 0, \\
1, & 0 \leq x < l.
\end{cases} \]

(b). Using above Fourier series and Parseval’s theorem to compute

\[1 + \frac{1}{3^2} + \frac{1}{5^2} + \cdots. \]
Copyright by Meijun Zhu