Review for Midterm 1

Office hour: Feb. 20, 3:30-4:30pm; Exam: Feb. 22

I. Partial derivative

We start to learn functions of several variables.
Definition:
How to find Domain, what is Level curves (and Level curves, etc.
Limit and Continuity:
When an rational polynomial has NO limit: Find two difference paths.
How to find limit? Definition is TOO HARD. But if the function is continuous at the point, it is easy!

Try these examples
Exercise 1: If the limit exists, find it. If it does not exist, give the reason.
1).

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{10}+y \ln \left(x^{2}+1\right)}{x^{3}+y^{6}+1} .
$$

2)

$$
\lim _{(x, y) \rightarrow(0,0)} \ln \left(x^{2}+y^{3}+2\right) .
$$

3)

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4} y}{x^{8}+y^{2}} .
$$

Partial derivative:
How to compute the partial derivatives (include how to check a function solving a partial differential equation): All those old tricks from previous Calculus courses are still useful. Key part: Chain rule.

Exercise 2: Check $u(x, t)=f(x+a t)$ solves the following equation:

$$
u_{t t}-a^{2} u_{x x}=0
$$

Applications of derivatives: Tangent plane and normal line. The general way to find the formula using level surface: Where the normal direction

$$
\left(F_{x}\left(x_{0}, y_{0}, z_{0}\right), F_{y}\left(x_{0}, y_{0}, z_{0}\right), F_{z}\left(x_{0}, y_{0}, z_{0}\right)\right)
$$

come from?
Exercise 3: Assume that $g(x, y)=f\left(x^{2}+\sin y\right)$ where $f(t)$ is a differentiable function of t. If $f^{\prime}(0)=2$,
(a). Find $\partial g / \partial y(0,0)=$?.
(b). Find the tangent plane of $g(x, y)$ at point $(0,0)$.

Exercise 4:

Find the tangent plane and normal line to the sphere $x^{2}+(y-1)^{2}+z^{2}=2$ at point ($1,1,1$).

Maximum and Minimum

How to find Critical Points: Solve the system of equations.
How to distinguish the local MAX and MIN from critical points: compute the determinant and $f_{x x}$.

How to find GLOBAL extreme value: 1). fine extreme value insider the region, 2). find with constraint using Lagrange multipliers.

Exercise 5. Typical example: find the maximum and minimum value of $f(x, y)=$ $x y$ in the closed disk: $\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$.

II. Double integrals

We start with the definition of double integral (the VOLUME).
How to compute it?
Integrals on rectangles: The link between a double integral and ITERATED ingeral is the deep FUBINI's theorem.

Exercise 6: Evaluate

$$
\iint_{R} x y e^{x+y^{2}} d A
$$

where $R=[0,1] \times[0,1]$.

Integrals on general regions (will cover it after the first midterm!): Basically, we extend $f(x, y)$ to $F(x, y)$ over a bigger rectangle. TWO TYPES regions. One:

$$
\left.D=\{(x, y): a \leq x \leq b, \quad \text { (for fixed } \mathrm{x}), \quad g_{1}(x) \leq y \leq g_{2}(x)\right\}
$$

The second

$$
D=\left\{(x, y): c \leq y \leq d, \quad(\text { for fixed } y), \quad h_{1}(y) \leq x \leq h_{2}(y)\right\}
$$

Copyright by Meijun Zhu

