Review for Midterm 3

Extra office hour: Monday 9:30-11:00am

On Parametric equations and Polar coordinates (Chapter 11).

Area and Length: Intersection point(s), Area and Length using polar coordinates.

Exercise 1: (a). Find ALL intersection points: \(r = 2 \) and \(r = 2 \cos 2\theta \).
(b). Find the area of the region that lies inside both of the circles \(r = 2 \sin \theta \) and \(r = \sin \theta + \cos \theta \).

On (Vectors and geometry of Spaces Chapter 13).

Vectors: Algebraic operation, vector products (Dot and cross, and scalar triple). Geometric meanings (addition, subtraction, dot product, cross product and mixed product).

Exercise 2. For what values of \(b \) is the vector \((1, b, -2)\) is parallel to the plane \(2x + 5y - z = d?\)

Exercise 3. (a) Find
\[
\mathbf{i} \times (\mathbf{j} \times \mathbf{k}) = ?
\]
\[
\mathbf{i} \times (\mathbf{i} \times \mathbf{k}) = ?
\]

(b) Can you prove that
\[
\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}?
\]

(c) Assume \(\mathbf{a} \neq \mathbf{0} \). If \(\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{c} \), is \(\mathbf{b} = \mathbf{c} \)?

Line and plane: Equations, geometric meaning.

Exercise 3: (a) Do the following two line intersect each other? If yes, find the intersection point: \(\mathbf{r} = (1, 2, 3) + t(2, 3, 1) \); \(\mathbf{r} = (2, 2, 1) + t(1, 3, 1) \).
(a) For what values of a do the following two line intersect each other $\mathbf{r} = (1, 2, 3) + t(2, 3, 1); \quad \mathbf{r} = (2, 2, 1) + t(1, 3, a)$?

Exercise 4: (a). Show that the distance between the given parallel planes $ax + by + cz = d_1$ and $ax + by + cz = d_2$ is

$$\text{distance} = \frac{|d_1 - d_2|}{\sqrt{a^2 + b^2 + c^2}}.$$

(b). Find the equations of the planes which is parallel to $x + 2y + 3z = 1$ and have distance 3 to this plane.

WARNING: YOU ARE RESPONSIBLE FOR CHECKING OUT MY TYPOS!

Comments and question to: mzhu@math.ou.edu