Conformal Curvature Flows on S^{1} and Image Processing

Meijun Zhu

University of Oklahoma

Outline

\square Setup of the question: introducing curvatures and curvature flow equations.

Outline

\square Setup of the question: introducing curvatures and curvature flow equations.

- Outline the main theorems: the steady states, existences and exponential convergence of various flows.

Outline

\square Setup of the question: introducing curvatures and curvature flow equations.
\square Outline the main theorems: the steady states, existences and exponential convergence of various flows.
\square Application in image processing.

Intoduction

The Yamabe problem on a compact Riemannian manifold $\left(M^{n}, g_{0}\right)(n \geq 3)$ is to find $g \in\left[g_{0}\right]$ such that $\left(M^{n}, g\right)$ has constant scalar curvature.

Intoduction

The Yamabe problem on a compact Riemannian manifold $\left(M^{n}, g_{0}\right)(n \geq 3)$ is to find $g \in\left[g_{0}\right]$ such that $\left(M^{n}, g\right)$ has constant scalar curvature. Parabolic: The normalized Yamabe flow is defined as

$$
\begin{equation*}
\partial_{t} g=\left(\bar{R}_{g}-R_{g}\right) g \tag{1}
\end{equation*}
$$

Intoduction

The Yamabe problem on a compact Riemannian manifold
$\left(M^{n}, g_{0}\right)(n \geq 3)$ is to find $g \in\left[g_{0}\right]$ such that $\left(M^{n}, g\right)$ has constant scalar curvature. Parabolic: The normalized Yamabe flow is defined as

$$
\begin{equation*}
\partial_{t} g=\left(\bar{R}_{g}-R_{g}\right) g \tag{1}
\end{equation*}
$$

Elliptic: The conformal Laplacian

$$
L_{g}=-\frac{4(n-1)}{n-2} \Delta_{g}+R_{g}
$$

is a conformal covariant,

Intoduction

The Yamabe problem on a compact Riemannian manifold $\left(M^{n}, g_{0}\right)(n \geq 3)$ is to find $g \in\left[g_{0}\right]$ such that $\left(M^{n}, g\right)$ has constant scalar curvature. Parabolic: The normalized Yamabe flow is defined as

$$
\begin{equation*}
\partial_{t} g=\left(\bar{R}_{g}-R_{g}\right) g \tag{1}
\end{equation*}
$$

Elliptic: The conformal Laplacian

$$
L_{g}=-\frac{4(n-1)}{n-2} \Delta_{g}+R_{g}
$$

is a conformal covariant, namely for any $g_{1} \in[g]$, writing
$g_{1}=\varphi^{\frac{4}{n-2}} g$ with $\varphi>0$, we have

$$
L_{g_{1}} u=L_{\varphi^{\frac{4}{n-2}} g} u=\varphi^{-\frac{n+2}{n-2}} L_{g}(\varphi u)
$$

Introduction

The conformal Laplacian $L_{g}=-\frac{4(n-1)}{n-2} \Delta_{g}+R_{g}$ is not well defined when $n<3$.

Introduction

The conformal Laplacian $L_{g}=-\frac{4(n-1)}{n-2} \Delta_{g}+R_{g}$ is not well defined when $n<3$.
$n=2$: On S^{2}, if $g=e^{2 u} g_{s}$, then $R_{g}=e^{-2 u}\left(-\Delta_{g_{s}} u+2\right)$ and the conformal Laplacian is given by $L_{g} u=-2 \Delta_{g} u+R_{g}$. Related to the uniformization Theorem.

Introduction

The conformal Laplacian $L_{g}=-\frac{4(n-1)}{n-2} \Delta_{g}+R_{g}$ is not well defined when $n<3$.
$n=2$: On S^{2}, if $g=e^{2 u} g_{s}$, then $R_{g}=e^{-2 u}\left(-\Delta_{g_{s}} u+2\right)$ and the conformal Laplacian is given by $L_{g} u=-2 \Delta_{g} u+R_{g}$. Related to the uniformization Theorem.
How about $n=1$? What are the similar problems?

Introduction

The conformal Laplacian $L_{g}=-\frac{4(n-1)}{n-2} \Delta_{g}+R_{g}$ is not well defined when $n<3$.
$n=2$: On S^{2}, if $g=e^{2 u} g_{s}$, then $R_{g}=e^{-2 u}\left(-\Delta_{g_{s}} u+2\right)$ and the conformal Laplacian is given by $L_{g} u=-2 \Delta_{g} u+R_{g}$. Related to the uniformization Theorem.
How about $n=1$? What are the similar problems?
\square Curvatures, conformal covariant operators?

Introduction

The conformal Laplacian $L_{g}=-\frac{4(n-1)}{n-2} \Delta_{g}+R_{g}$ is not well defined when $n<3$.
$n=2$: On S^{2}, if $g=e^{2 u} g_{s}$, then $R_{g}=e^{-2 u}\left(-\Delta_{g_{s}} u+2\right)$ and the conformal Laplacian is given by $L_{g} u=-2 \Delta_{g} u+R_{g}$. Related to the uniformization Theorem.
How about $n=1$? What are the similar problems?
\square Curvatures, conformal covariant operators?
Existence of extremal metrics? Parabolic approach?

Introduction

The conformal Laplacian $L_{g}=-\frac{4(n-1)}{n-2} \Delta_{g}+R_{g}$ is not well defined when $n<3$.
$n=2$: On S^{2}, if $g=e^{2 u} g_{s}$, then $R_{g}=e^{-2 u}\left(-\Delta_{g_{s}} u+2\right)$ and the conformal Laplacian is given by $L_{g} u=-2 \Delta_{g} u+R_{g}$. Related to the uniformization Theorem.
How about $n=1$? What are the similar problems?
\square Curvatures, conformal covariant operators?
Existence of extremal metrics? Parabolic approach?

- Global existences and convergence of the flows?

The α-curvature

Let $\left(S^{1}, g_{s}\right)$ be the unit circle with standard metric $g_{s}=d \theta \otimes d \theta$. For any metric g on S^{1}, we write $g:=d \sigma \otimes d \sigma=v^{-4} g_{s}$ for some positive function v and define a general α-curvature of g for any positive constant α by

$$
R_{g}^{\alpha}=v^{3}\left(\alpha v_{\theta \theta}+v\right) .
$$

The α-curvature

Let $\left(S^{1}, g_{s}\right)$ be the unit circle with standard metric $g_{s}=d \theta \otimes d \theta$. For any metric g on S^{1}, we write $g:=d \sigma \otimes d \sigma=v^{-4} g_{s}$ for some positive function v and define a general α-curvature of g for any positive constant α by

$$
R_{g}^{\alpha}=v^{3}\left(\alpha v_{\theta \theta}+v\right) .
$$

α-conformal Lapalacian of g is defined by:

$$
L_{g}^{\alpha}=\alpha \Delta_{g}+R_{g}^{\alpha},
$$

where $\Delta_{g}=D_{\sigma \sigma}$.

The α-curvature

Let $\left(S^{1}, g_{s}\right)$ be the unit circle with standard metric $g_{s}=d \theta \otimes d \theta$. For any metric g on S^{1}, we write $g:=d \sigma \otimes d \sigma=v^{-4} g_{s}$ for some positive function v and define a general α-curvature of g for any positive constant α by

$$
R_{g}^{\alpha}=v^{3}\left(\alpha v_{\theta \theta}+v\right)
$$

α-conformal Lapalacian of g is defined by:

$$
L_{g}^{\alpha}=\alpha \Delta_{g}+R_{g}^{\alpha},
$$

where $\Delta_{g}=D_{\sigma \sigma} . L_{g}^{\alpha}$ is a conformal covariant:
Proposition: For $\varphi>0$, if $g_{2}=\varphi^{-4} g_{1}$ then $R_{g_{2}}^{\alpha}=\varphi^{3} L_{g_{1}}^{\alpha} \varphi$, and

$$
L_{g_{2}}^{\alpha}(\psi)=\varphi^{3} L_{g_{1}}^{\alpha}(\psi \varphi), \quad \forall \psi \in C^{2}\left(\mathbf{S}^{1}\right)
$$

The α-curvature

Existence of an extremal metric in the same class by deformation? Parabolic approach: Introduce α-curvature flow as

$$
\begin{equation*}
\partial_{t} g=\left(\bar{R}_{g}^{\alpha}-R_{g}^{\alpha}\right) g \tag{2}
\end{equation*}
$$

The α-curvature

Existence of an extremal metric in the same class by deformation? Parabolic approach: Introduce α-curvature flow as

$$
\begin{equation*}
\partial_{t} g=\left(\bar{R}_{g}^{\alpha}-R_{g}^{\alpha}\right) g \tag{2}
\end{equation*}
$$

Along the flow we have

$$
\partial_{t} \overline{R_{g}^{\alpha}}=\frac{1}{4 \pi} \int\left(R_{g}^{\alpha}-\overline{R_{g}^{\alpha}}\right)^{2} d \sigma .
$$

The α-curvature

Existence of an extremal metric in the same class by deformation? Parabolic approach: Introduce α-curvature flow as

$$
\begin{equation*}
\partial_{t} g=\left(\bar{R}_{g}^{\alpha}-R_{g}^{\alpha}\right) g \tag{2}
\end{equation*}
$$

Along the flow we have

$$
\partial_{t} \overline{R_{g}^{\alpha}}=\frac{1}{4 \pi} \int\left(R_{g}^{\alpha}-\overline{R_{g}^{\alpha}}\right)^{2} d \sigma .
$$

Will see shortly

$$
\overline{R_{g}^{\alpha}} \leq 1 .
$$

for some special α.

Affine curvature=1-curvature

Two cases $\alpha=1$ and $\alpha=4$ are of special interest.

Affine curvature=1-curvature

Two cases $\alpha=1$ and $\alpha=4$ are of special interest.

Case of $\alpha=1$. The affine curvature of a closed strictly convex curve $=$ its 1 -curvature: $\mathbf{x}(\theta) \subset \mathbf{R}^{2}(\theta \in[0,2 \pi])$ be such a curve, parameterized by the angle θ between the tangent line and x-axis. The affine arc-length function $\sigma(\theta)=\int_{0}^{\theta} k^{-2 / 3} d \theta$, where $k=k(\theta)$ is the curvature. Then the affine curvature of $\mathbf{x}(\theta)$ is given by:

$$
\kappa=k\left(\left(k^{\frac{1}{3}}\right)_{\theta \theta}+k^{\frac{1}{3}}\right)=\left(k^{\frac{1}{3}}\right)^{3}\left(\left(k^{\frac{1}{3}}\right)_{\theta \theta}+k^{\frac{1}{3}}\right) .
$$

It coincides with 1-curvature $R_{g_{x}}^{1}$, where $g_{x}=\left(k^{\frac{1}{3}}\right)^{-4} d \theta \otimes d \theta$.

Affine curvature = $\mathbf{1}$-curvature

One the other hand, given $\left(S^{1}, g\right)$, write $g=u^{-4} g_{s}$. Suppose $u(\theta)$ satisfies the orthogonal condition:

$$
\begin{equation*}
\int_{0}^{2 \pi} \frac{\cos \theta}{u^{3}(\theta)} d \theta=\int_{0}^{2 \pi} \frac{\sin \theta}{u^{3}(\theta)} d \theta=0 . \tag{3}
\end{equation*}
$$

Define $\mathbf{x}(\theta)$ as

$$
\mathbf{x}(\theta)=\left(\int_{0}^{\theta} \frac{\cos \theta}{u^{3}(\theta)} d \theta, \int_{0}^{\theta} \frac{\sin \theta}{u^{3}(\theta)} d \theta\right)
$$

Then $\mathbf{x}(\theta)$ is a closed strictly convex curve, and its affine curvature is equal to R_{g}^{1}.

The α-curvature

Therefore we have the following correspondece:
$\left[\begin{array}{c}\text { Close convex curve } \mathbf{x}(\theta) \\ \text { with curvature } k(\theta) . \\ \text { Affine curvature } \kappa(\theta)\end{array}\right] \leftrightarrow\left[\begin{array}{c}\text { Metric } g=\left(k^{\frac{1}{3}}\right)^{-4} g_{s} \text { on } S^{1} \\ \text { with } v=k^{\frac{1}{3}} \text { satisfies (3). } \\ 1 \text {-curvature } R_{g}^{1}\end{array}\right]$

The α-curvature

Therefore we have the following correspondece:
$\left[\begin{array}{c}\text { Close convex curve } \mathbf{x}(\theta) \\ \text { with curvature } k(\theta) . \\ \text { Affine curvature } \kappa(\theta)\end{array}\right] \leftrightarrow\left[\begin{array}{c}\text { Metric } g=\left(k^{\frac{1}{3}}\right)^{-4} g_{s} \text { on } S^{1} \\ \text { with } v=k^{\frac{1}{3}} \text { satisfies (3). } \\ 1 \text {-curvature } R_{g}^{1}\end{array}\right]$
$\alpha=4$: The 4 -curvature R_{g}^{4} can be viewed as the scalar curvature in an analogous one-dimensional Yamabe flow.

The α-curvature

Therefore we have the following correspondece:
$\left[\begin{array}{c}\text { Close convex curve } \mathbf{x}(\theta) \\ \text { with curvature } k(\theta) . \\ \text { Affine curvature } \kappa(\theta)\end{array}\right] \leftrightarrow\left[\begin{array}{c}\text { Metric } g=\left(k^{\frac{1}{3}}\right)^{-4} g_{s} \text { on } S^{1} \\ \text { with } v=k^{\frac{1}{3}} \text { satisfies (3). } \\ \text { 1-curvature } R_{g}^{1}\end{array}\right]$
$\alpha=4$: The 4 -curvature R_{g}^{4} can be viewed as the scalar curvature in an analogous one-dimensional Yamabe flow.

NOW: flow method to find the extremal metrics for the cases $\alpha=1$ and $\alpha=4$. We denote R_{g}^{1} by κ.

1-curvature flow

An analytic proof to the following general Blaschke-Santaló type inequality, which implies that $\bar{\kappa}_{g}$ is bounded above, and classifies all the extremal metrics:
General Blaschke-Santaló inequality
For $u(\theta) \in H^{1}\left(S^{1}\right)$ and $u>0$, if u satisfies the
orthogonal condition (3), then

$$
\int_{0}^{2 \pi}\left(u^{2}-u_{\theta}^{2}\right) d \theta \int_{0}^{2 \pi} u^{-2}(\theta) d \theta \leq 4 \pi^{2}
$$

1-curvature flow

An analytic proof to the following general Blaschke-Santaló type inequality, which implies that $\bar{\kappa}_{g}$ is bounded above, and classifies all the extremal metrics:
General Blaschke-Santaló inequality
For $u(\theta) \in H^{1}\left(S^{1}\right)$ and $u>0$, if u satisfies the
orthogonal condition (3), then

$$
\int_{0}^{2 \pi}\left(u^{2}-u_{\theta}^{2}\right) d \theta \int_{0}^{2 \pi} u^{-2}(\theta) d \theta \leq 4 \pi^{2}
$$

and the equality holds if and only if

$$
u(\theta)=c \sqrt{\lambda^{2} \cos ^{2}(\theta-\alpha)+\lambda^{-2} \sin ^{2}(\theta-\alpha)}
$$

Exponential convergence

Theorem: Suppose $g_{0}=u^{-4}(\theta, 0) g_{s}$ and $u(\theta, 0)$ satisfies the orthogonal condition (3). Then there is a unique smooth solution to the flow equation

$$
\partial_{t} g=(\bar{\kappa}-\kappa) g, \quad g(\theta, 0)=g_{0}(\theta)
$$

for $t \in[0,+\infty)$. Moreover, $g(t) \rightarrow g_{\infty}$ exponentially as $t \rightarrow+\infty$, and the 1-curvature of g_{∞} is constant.

Exponential convergence

Theorem: Suppose $g_{0}=u^{-4}(\theta, 0) g_{s}$ and $u(\theta, 0)$ satisfies the orthogonal condition (3). Then there is a unique smooth solution to the flow equation

$$
\partial_{t} g=(\bar{\kappa}-\kappa) g, \quad g(\theta, 0)=g_{0}(\theta)
$$

for $t \in[0,+\infty)$. Moreover, $g(t) \rightarrow g_{\infty}$ exponentially as $t \rightarrow+\infty$, and the 1-curvature of g_{∞} is constant.

Our 1-curvature flow \Leftrightarrow The normalized affine curve-shortening flow,

$$
\mathbf{x}_{t}(\sigma, t)=\mathbf{x}_{\sigma \sigma} .
$$

Outline of the proof

Along the flow $\partial_{t} g=\left(\bar{\kappa}_{g}-\kappa_{g}\right) g$, we have

$$
\kappa_{t}=\frac{1}{4} \Delta \kappa+\kappa(\kappa-\bar{\kappa}), \quad u_{t}=\frac{1}{4}(\kappa-\bar{\kappa}) u,
$$

i.e.

$$
u_{t}=\frac{1}{4} u^{4} \Delta_{g_{s}} u+\frac{1}{4} u^{5}-\frac{1}{4} \bar{\kappa} u .
$$

Outline of the proof

Along the flow $\partial_{t} g=\left(\bar{\kappa}_{g}-\kappa_{g}\right) g$, we have

$$
\kappa_{t}=\frac{1}{4} \Delta \kappa+\kappa(\kappa-\bar{\kappa}), \quad u_{t}=\frac{1}{4}(\kappa-\bar{\kappa}) u,
$$

i.e.

$$
u_{t}=\frac{1}{4} u^{4} \Delta_{g_{s}} u+\frac{1}{4} u^{5}-\frac{1}{4} \bar{\kappa} u .
$$

Therefore

$$
\begin{gathered}
\partial_{t} \int d \sigma=\partial_{t} \int u^{-2} d \theta=\int \frac{1}{2}(\bar{\kappa}-\kappa) d \sigma=0 \\
\partial_{t} \int_{0}^{2 \pi} u^{-3}(\theta) \cos \theta d \theta=\frac{3 \bar{\kappa}}{4} \int_{0}^{2 \pi} u^{-3}(\theta) \cos \theta d \theta
\end{gathered}
$$

It preserves the length and the orthogonality!

Existence of the flow

Suppose $g(t)$ satisfies the flow equation on $[0, T]$, then we have

$$
\kappa_{t}+\bar{\kappa} \kappa=\frac{1}{4} \Delta \kappa+\kappa^{2} \geq \frac{1}{4} \Delta \kappa .
$$

Existence of the flow

Suppose $g(t)$ satisfies the flow equation on $[0, T]$, then we have

$$
\kappa_{t}+\bar{\kappa} \kappa=\frac{1}{4} \Delta \kappa+\kappa^{2} \geq \frac{1}{4} \Delta \kappa .
$$

It follows from the maximum principle that

$$
\kappa \geq \min \kappa(\sigma, 0) e^{-\int_{0}^{t} \bar{\kappa} d \tau},
$$

then: $u(\sigma, t)=u(\sigma, 0) \cdot e^{\frac{1}{4} \int_{0}^{t}(\kappa-\bar{\kappa}) d \tau} \geq \tilde{c}_{2}\left(\kappa(\sigma, 0), t_{0}\right)>0$.

Existence of the flow

Suppose $g(t)$ satisfies the flow equation on $[0, T]$, then we have

$$
\kappa_{t}+\bar{\kappa} \kappa=\frac{1}{4} \Delta \kappa+\kappa^{2} \geq \frac{1}{4} \Delta \kappa .
$$

It follows from the maximum principle that

$$
\kappa \geq \min \kappa(\sigma, 0) e^{-\int_{0}^{t} \bar{\kappa} d \tau},
$$

then: $u(\sigma, t)=u(\sigma, 0) \cdot e^{\frac{1}{4} \int_{0}^{t}(\kappa-\bar{\kappa}) d \tau} \geq \tilde{c}_{2}\left(\kappa(\sigma, 0), t_{0}\right)>0$.
Using the evolution equation of u and the orthogonal condition, we can prove that there exist $C=C(T)$ such that $\frac{1}{C} \leq u \leq C$.
Therefore, from standard parabolic estimates that the solution exists for all $t \in[0, \infty)$.

Convergence of the flow

For $p \geq 2$, we define

$$
F_{p}(t)=\int_{0}^{2 \pi}|\kappa-\bar{\kappa}|^{p} d \sigma=\| \kappa-\left.\bar{\kappa}\right|_{L^{p}} ^{p} .
$$

Convergence of the flow

For $p \geq 2$, we define

$$
F_{p}(t)=\int_{0}^{2 \pi}|\kappa-\bar{\kappa}|^{p} d \sigma=\left||\kappa-\bar{\kappa}|_{L^{p}}^{p}\right.
$$

Direct computation yields

$$
\partial_{t} F_{p} \leq C_{1}(p)\left(F_{p+1}+F_{p}+F_{p}^{1+\frac{1}{p}}\right)-C_{2}(p) \int_{0}^{2 \pi}\left(|\kappa-\bar{\kappa}|^{\frac{p}{2}}\right)_{\sigma}^{2} d \sigma
$$

Convergence of the flow

For $p \geq 2$, we define

$$
F_{p}(t)=\int_{0}^{2 \pi}|\kappa-\bar{\kappa}|^{p} d \sigma=\left||\kappa-\bar{\kappa}|_{L^{p}}^{p} .\right.
$$

Direct computation yields

$$
\partial_{t} F_{p} \leq C_{1}(p)\left(F_{p+1}+F_{p}+F_{p}^{1+\frac{1}{p}}\right)-C_{2}(p) \int_{0}^{2 \pi}\left(|\kappa-\bar{\kappa}|^{\frac{p}{2}}\right)_{\sigma}^{2} d \sigma
$$

Using Sobolev inequality and Young's inequality we have

$$
\partial_{t} F_{p} \leq C_{2}(p)\left(F_{p}+F_{p}^{\beta}+F_{p}^{1+\frac{1}{p}}\right)-C_{3}(p) F_{3 p}^{\frac{1}{3}}
$$

where $\beta=\frac{2 p-1}{2 p-3}>1$ and C_{2}, C_{3} are positive constants.

Convergence of the flow

Since $\partial_{t} \bar{\kappa}_{g}=\frac{1}{4 \pi} \int\left(\kappa_{g}-\bar{\kappa}_{g}\right)^{2} d \sigma$ and $\bar{\kappa}$ is bounded above, we have

$$
\int_{0}^{\infty} F_{2}(t) d t<\infty
$$

Convergence of the flow

Since $\partial_{t} \bar{\kappa}_{g}=\frac{1}{4 \pi} \int\left(\kappa_{g}-\bar{\kappa}_{g}\right)^{2} d \sigma$ and $\bar{\kappa}$ is bounded above, we have

$$
\int_{0}^{\infty} F_{2}(t) d t<\infty
$$

Using above two inequalities, Hölder's inequality and induction, we can prove the following Lemma:
Lemma: For any $p \geq 2$,

$$
F_{p}(t) \rightarrow 0 \text { as } t \rightarrow+\infty \text { and } \int_{0}^{\infty} F_{p}(t) d t<\infty
$$

Convergence of the flow

Since $\partial_{t} \bar{\kappa}_{g}=\frac{1}{4 \pi} \int\left(\kappa_{g}-\bar{\kappa}_{g}\right)^{2} d \sigma$ and $\bar{\kappa}$ is bounded above, we have

$$
\int_{0}^{\infty} F_{2}(t) d t<\infty
$$

Using above two inequalities, Hölder's inequality and induction, we can prove the following Lemma:
Lemma: For any $p \geq 2$,

$$
F_{p}(t) \rightarrow 0 \text { as } t \rightarrow+\infty \text { and } \int_{0}^{\infty} F_{p}(t) d t<\infty
$$

Then we estimate $\int_{0}^{2 \pi}\left(\kappa_{\sigma}\right)^{2} d \sigma$ and obtain that

$$
\|\kappa-\bar{\kappa}\|_{L^{\infty}} \rightarrow 0, \text { as } t \rightarrow \infty .
$$

Exponential Convergence

To show exponential convergence:

$$
\partial_{t} F_{2} \leq\left(-\frac{1}{2}+o(1)\right) F_{2},
$$

which implies $F_{2} \leq C e^{-a t}$ for some $C, a>0$.

Exponential Convergence

To show exponential convergence:

$$
\partial_{t} F_{2} \leq\left(-\frac{1}{2}+o(1)\right) F_{2},
$$

which implies $F_{2} \leq C e^{-a t}$ for some $C, a>0$. Then from the flow equation

$$
u_{t}=\frac{1}{4}(\kappa-\bar{\kappa}) u,
$$

we can prove that $u(t)$ converges exponentially to some u_{∞} as $t \rightarrow \infty$:

$$
\left\|u(t)-u_{\infty}\right\|_{L^{\infty}} \leq C e^{-a t / 2}
$$

and the 1-curvature of $g_{\infty}:=u_{\infty}^{-4} g_{s}$ is constant 1 . This completes the proof of our main Theorem.

Theorem $(\alpha=4)$

For $\alpha=4$, we have the similar theorem:
Theorem: For an abstract curve $\left(S^{1}, u_{0}{ }^{-4} g_{s}\right)$, then there is a unique smooth solution to the flow equation

$$
\partial_{t} g=\left(\bar{R}_{g}^{4}-R_{g}^{4}\right) g, \quad g(\theta, 0)=g_{0}(\theta)
$$

for $t \in[0,+\infty)$. Moreover, $g(t) \rightarrow g_{\infty}$ exponentially as $t \rightarrow+\infty$, and the 4 -curvature of g_{∞} is constant.

Theorem $(\alpha=4)$

For $\alpha=4$, we have the similar theorem:
Theorem: For an abstract curve $\left(S^{1}, u_{0}{ }^{-4} g_{s}\right)$, then there is a unique smooth solution to the flow equation

$$
\partial_{t} g=\left(\bar{R}_{g}^{4}-R_{g}^{4}\right) g, \quad g(\theta, 0)=g_{0}(\theta)
$$

for $t \in[0,+\infty)$. Moreover, $g(t) \rightarrow g_{\infty}$ exponentially as $t \rightarrow+\infty$, and the 4 -curvature of g_{∞} is constant.

Along the flow \bar{R}_{g}^{4} is always increasing,

$$
\partial_{t} \bar{R}_{g}^{4}=\frac{1}{4 \pi} \int\left(R_{g}^{4}-\bar{R}_{g}^{4}\right)^{2} d \sigma
$$

Upper bound for $(\alpha=4)$

The upper unbound of \bar{R}_{g}^{4} follows from the following inequality:
Proposition: For $u(\theta) \in H^{1}\left(S^{1}\right)$ and $u>0$,

$$
\int_{0}^{2 \pi}\left(\frac{1}{4} u^{2}-u_{\theta}^{2}\right) d \theta \int_{0}^{2 \pi} u^{-2}(\theta) d \theta \leq \pi^{2}
$$

and the equality holds if and only if

$$
u(\theta)=c \sqrt{\lambda^{2} \cos ^{2} \frac{\theta-\alpha}{2}+\lambda^{-2} \sin ^{2} \frac{\theta-\alpha}{2}},
$$

for some $\lambda, c>0$ and $\alpha \in[0,2 \pi)$.

Q-curvature

For any given g on S^{1} we write $g=v^{-4 / 3} g_{s}$, where g_{s} is the standard metric. We define general $\alpha-Q$-curvature on $\left(S^{1}, g\right)$ as

$$
Q_{g}^{\alpha}=v^{\frac{5}{3}}\left(\frac{\alpha^{2}}{9} v_{\theta \theta \theta \theta}+\frac{10 \alpha}{9} v_{\theta \theta}+v\right)
$$

Q-curvature

For any given g on S^{1} we write $g=v^{-4 / 3} g_{s}$, where g_{s} is the standard metric. We define general α - Q-curvature on $\left(S^{1}, g\right)$ as

$$
Q_{g}^{\alpha}=v^{\frac{5}{3}}\left(\frac{\alpha^{2}}{9} v_{\theta \theta \theta \theta}+\frac{10 \alpha}{9} v_{\theta \theta}+v\right)
$$

and the corresponding operator as

$$
P_{g}^{\alpha}(f)=\frac{\alpha^{2}}{9} \Delta_{g}^{2} f+\frac{10 \alpha}{9} \nabla_{g}\left(R_{g}^{\alpha} \nabla_{g} f\right)+Q_{g}^{\alpha} f
$$

where R_{g}^{α} is the α-curvature of $\left(S^{1}, g\right)$.

Q-curvature

For any given g on S^{1} we write $g=v^{-4 / 3} g_{s}$, where g_{s} is the standard metric. We define general α - Q-curvature on $\left(S^{1}, g\right)$ as

$$
Q_{g}^{\alpha}=v^{\frac{5}{3}}\left(\frac{\alpha^{2}}{9} v_{\theta \theta \theta \theta}+\frac{10 \alpha}{9} v_{\theta \theta}+v\right)
$$

and the corresponding operator as

$$
P_{g}^{\alpha}(f)=\frac{\alpha^{2}}{9} \Delta_{g}^{2} f+\frac{10 \alpha}{9} \nabla_{g}\left(R_{g}^{\alpha} \nabla_{g} f\right)+Q_{g}^{\alpha} f
$$

where R_{g}^{α} is the α-curvature of $\left(S^{1}, g\right)$.
P_{g}^{α} is a conformal covariant: if $g_{2}=\varphi^{-\frac{4}{3}} g_{1}$, then $Q_{g_{2}}^{\alpha}=\varphi^{\frac{5}{3}} P_{g_{1}}^{\alpha} \varphi$ and $P_{g_{2}}^{\alpha} \psi=\varphi^{\frac{5}{3}} P_{g_{1}}^{\alpha}(\psi \varphi), \forall \psi$.

Q-curvature flows

Existence of extremal metrics?

Introduce $\alpha-Q$-curvature flow

$$
\partial_{t} g=\left(Q_{g}^{\alpha}-\bar{Q}_{g}^{\alpha}\right) g
$$

Q-curvature flows

Existence of extremal metrics?

Introduce $\alpha-Q$-curvature flow

$$
\partial_{t} g=\left(Q_{g}^{\alpha}-\bar{Q}_{g}^{\alpha}\right) g
$$

In such a setting, the above flow is again a gradient flow of \bar{Q}_{g}^{α} : Along the flow, \bar{Q}_{g}^{α} is always decreasing:

$$
\partial_{t} \bar{Q}_{g}^{\alpha}=-\frac{3}{4 \pi} \int_{S^{1}}\left(Q_{g}^{\alpha}-\bar{Q}_{g}^{\alpha}\right)^{2} d \sigma .
$$

Q-curvature flows

Existence of extremal metrics?

Introduce $\alpha-Q$-curvature flow

$$
\partial_{t} g=\left(Q_{g}^{\alpha}-\bar{Q}_{g}^{\alpha}\right) g
$$

In such a setting, the above flow is again a gradient flow of \bar{Q}_{g}^{α} : Along the flow, \bar{Q}_{g}^{α} is always decreasing:

$$
\partial_{t} \bar{Q}_{g}^{\alpha}=-\frac{3}{4 \pi} \int_{S^{1}}\left(Q_{g}^{\alpha}-\bar{Q}_{g}^{\alpha}\right)^{2} d \sigma .
$$

Again, we are interested in two cases: $\alpha=1$ and $\alpha=4$.
Very recently, we prove the existence and convergence of the $\alpha-Q-$ curvature flow in these two cases.

1-Q-curvature flow

Hard part: the proof to the following inequality, which implies that $\overline{Q_{g}^{1}}$ is bounded from below, and classifies all the extremal metrics: Blaschke-Santaló inequality involving higher order derivative? For $u(\theta) \in H^{2}\left(S^{1}\right)$ and $u>0$, satisfying the orthogonal condition

$$
\begin{gather*}
\int_{0}^{2 \pi} \frac{\cos ^{3} \theta}{u^{5 / 3}(\theta)} d \theta=\int_{0}^{2 \pi} \frac{\sin ^{3} \theta}{u^{5 / 3}(\theta)} d \theta=0 \tag{4}\\
\int_{0}^{2 \pi}\left(u_{\theta \theta}^{2}-10 u_{\theta}^{2}+9 u^{2}\right) d \theta\left(\int_{0}^{2 \pi} u^{-2 / 3}(\theta) d \theta\right)^{3} \geq 144 \pi^{4},
\end{gather*}
$$

1-Q-curvature flow

Hard part: the proof to the following inequality, which implies that $\overline{Q_{g}^{1}}$ is bounded from below, and classifies all the extremal metrics:
Blaschke-Santaló inequality involving higher order derivative?
For $u(\theta) \in H^{2}\left(S^{1}\right)$ and $u>0$, satisfying the orthogonal condition

$$
\begin{gather*}
\int_{0}^{2 \pi} \frac{\cos ^{3} \theta}{u^{5 / 3}(\theta)} d \theta=\int_{0}^{2 \pi} \frac{\sin ^{3} \theta}{u^{5 / 3}(\theta)} d \theta=0 \tag{4}\\
\int_{0}^{2 \pi}\left(u_{\theta \theta}^{2}-10 u_{\theta}^{2}+9 u^{2}\right) d \theta\left(\int_{0}^{2 \pi} u^{-2 / 3}(\theta) d \theta\right)^{3} \geq 144 \pi^{4},
\end{gather*}
$$

" =" holds if and only if

$$
u_{0}(\theta)=c\left(\lambda^{2} \cos ^{2}(\theta-\beta)+\lambda^{-2} \sin ^{2}(\theta-\beta)\right)^{\frac{3}{2}}
$$

Exponential convergence

Theorem: Suppose the initial metric $g_{0}=v^{-\frac{4}{3}}(\theta, 0) g_{s}$ on S^{1} satisfies the orthogonal condition (4). Then there is a unique smooth solution to the flow equation

$$
\partial_{t} g=\left(\overline{Q_{g}^{1}}-Q_{g}^{1}\right) g, \quad g(0)=g_{0}
$$

for $t \in[0,+\infty)$. Moreover, $g(t) \rightarrow g_{\infty}$ exponentially as $t \rightarrow+\infty$, and the 1-Q-curvature of g_{∞} is constant.

Q-curvature flows

Direct computation shows that

$$
Q_{g}^{\alpha}=\frac{\alpha}{3} \Delta_{g} R_{g}^{\alpha}+\left(R_{g}^{\alpha}\right)^{2}
$$

which implies

$$
\int Q_{g}^{\alpha} d \sigma=\int\left(R_{g}^{\alpha}\right)^{2} d \sigma
$$

Q-curvature flows

Direct computation shows that

$$
Q_{g}^{\alpha}=\frac{\alpha}{3} \Delta_{g} R_{g}^{\alpha}+\left(R_{g}^{\alpha}\right)^{2},
$$

which implies

$$
\int Q_{g}^{\alpha} d \sigma=\int\left(R_{g}^{\alpha}\right)^{2} d \sigma
$$

Therefore $\int\left(R_{g}^{\alpha}\right)^{2} d \sigma$ is decreasing along the α - Q-curvature flow.
Thus the α - Q-curvature flow can be viewed as one dimensional
Calabi flow. Caution: It is not trivial to see that $\int\left(R_{g}^{\alpha}\right)^{2} d \sigma$ is bounded below by a positive constant.

Applications in image processing

Applications in image processing

Top left: original image (with impulse noise).
Top right: affine image flow (10 steps).
Bottom left: affine image flow (20 steps).
Bottom right: our 4-th order image flow(10 steps).
Equation for affine flow:
$\Phi_{t}=\left(\Phi_{x}^{2} \Phi_{y y}+\Phi_{y}^{2} \Phi_{x x}-2 \Phi_{x} \Phi_{y} \Phi_{x y}\right)^{\frac{1}{3}}, \quad \Phi(0)=I(x, y)$.

How does it work?

Consider contour curve for any $C \geq 0$:

$$
\Phi(x, y)=C .
$$

Move such curves simultaneously:

$$
\Phi((x(t), y(t), t)=C .
$$

So

$$
\Phi_{x} \cdot x_{t}+\Phi_{y} \cdot y_{t}+\Phi_{t}=0
$$

i.e.

$$
\Phi_{t}=-\left(x_{t}, y_{t}\right) \cdot\left(\Phi_{x}, \Phi_{y}\right)
$$

curve shortening flow

Let $F(t)=(x(t), y(t))$ represent the curve.
Curve shortening flow is defined by

$$
F_{t}=k N=-k\left(\frac{\Phi_{x}}{|\nabla \Phi|}, \frac{\Phi_{y}}{|\nabla \Phi|}\right) .
$$

$\Phi_{t}=\frac{\Phi_{x}^{2} \Phi_{y y}+\Phi_{y}^{2} \Phi_{x x}-2 \Phi_{x} \Phi_{y} \Phi_{x y}}{\|\left.\nabla \Phi\right|^{2}}, \quad$ on $[0,+\infty) \times \Omega$
$\Phi(x, y, 0)=I(x, y), \quad \mathrm{I}(\mathrm{x}, \mathrm{y})$ initial image
various boundary condition.

Affine curve shortening flow

Affine shortening flow is defined by

$$
F_{t}=k^{1 / 3} N=-k^{1 / 3}\left(\frac{\Phi_{x}}{|\nabla \Phi|}, \frac{\Phi_{y}}{|\nabla \Phi|}\right) .
$$

$$
\begin{aligned}
& \Phi_{t}=\left(\Phi_{x}^{2} \Phi_{y y}+\Phi_{y}^{2} \Phi_{x x}-2 \Phi_{x} \Phi_{y} \Phi_{x y}\right)^{1 / 3}, \quad \text { on }[0,+\infty) \\
& \Phi(x, y, 0)=I(x, y), \mathrm{I}(\mathrm{x}, \mathrm{y}) \text { initial image } \\
& \text { various boundary condition. }
\end{aligned}
$$

Thank you!

Total curvature

For fixed length $\left(\int_{0}^{2 \pi} u^{-2} d \theta=2 \pi\right)$, B-S inequality \Longrightarrow

$$
\begin{aligned}
2 \pi & \geq \int_{0}^{2 \pi}\left(u^{2}-u_{\theta}^{2}\right) d \theta \\
& =\int_{0}^{2 \pi} u^{3}\left(u+u_{\theta \theta}\right) u^{-2} d \theta \\
& =\int_{0}^{2 \pi} \kappa d \sigma .
\end{aligned}
$$

Thus:

$$
\bar{\kappa} \leq 1 .
$$

Affine isoperimetric inequality

B-S inequality \Longrightarrow for $h>0$,

$$
4 \pi^{2} \int_{0}^{2 \pi} h\left(h+h_{\theta \theta}\right) d \theta \geq\left[\int_{0}^{2 \pi}\left(h+h_{\theta \theta}\right)^{\frac{2}{3}} d \theta\right]^{3}
$$

Let $h=<X,-N>$ be the supporting function of the closed strictly convex curve $X(\theta)$, then $h+h_{\theta \theta}=1 / k$, $\int_{0}^{2 \pi}\left(h+h_{\theta \theta}\right)^{\frac{2}{3}} d \theta=\int_{0}^{2 \pi} k^{-2 / 3} d \theta=\sigma$.
Also $\int_{0}^{2 \pi} h\left(h+h_{\theta \theta}\right) d \theta=2 A$.
So

$$
8 \pi^{2} A \geq \sigma^{3}
$$

