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Intoduction

The Yamabe problem on a compact Riemannian manifold
(M™, go)(n > 3)istofindg € [go] such tha{ M", g) has constant
scalar curvature.
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The Yamabe problem on a compact Riemannian manifold

(M™, go)(n > 3)istofindg € [go] such tha{ M", g) has constant
scalar curvature. Parabolic: The normalized Yamabe floveisdd
as

Org = (Eg — Ry)g. (1)
Elliptic: The conformal Laplacian

4(n —1)
=2

Lg:_ Ag""Rg

IS a conformal covariant,
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The Yamabe problem on a compact Riemannian manifold
(M™, go)(n > 3)istofindg € [go] such tha{ M", g) has constant

scalar curvature. Parabolic: The normalized Yamabe floveishdd
as

Org = (Eg — Ry)g. (1)
Elliptic: The conformal Laplacian

4(n —1)
=2

Lg:_ Ag""Rg

IS a conformal covariant, namely for agy € |g|, writing
g1 = gpﬁg with ¢ > 0, we have

Lou=L 4 u=q@ 2L (pu).
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Juction

formal Laplaciah, = —%Ag + R, Is not well defined
< 3.



The conformal Laplaciah, = —%Ag + R, 1s not well defined
whenn < 3.

: On 5%, if g = e*g,, thenR, = e *%(—A, u + 2) and the
conformal Laplacian is given b¥,u = —2A,u + R,. Related to the
uniformization Theorem.
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The conformal Laplaciai, = —%Ag + R, Is not well defined
whenn < 3.

: On 5%, if g = e*g,, thenR, = e *%(—A, u + 2) and the
conformal Laplacian is given b¥,u = —2A,u + R,. Related to the
uniformization Theorem.

How about ? What are the similar problems?

Curvatures, conformal covariant operators?
Existence of extremal metrics? Parabolic approach?

Global existences and convergence of the flows?
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The o-curvature

Let (S', g,) be the unit circle with standard metrig = df ® df. For
any metricg on S*t, we writeg := do ® do = v—*¢g, for some
positive functionv and define a general of g for any
positive constant: by

RS = v°(awgs + v).

Nov. 2007, OU — p.5/
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Let (S, g,) be the unit circle with standard metrig = df ® df. For
any metricg on S*t, we writeg := do ® do = v—*¢g, for some
positive functionv and define a general of g for any
positive constanty by

R = v’ (awgg + ).

a-conformal Lapalacianf ¢ is defined by:
Ly =alAg, + R,

whereA, = D,,. L IS a conformal covariant:
Foryp > 0, if g, = ¢~ *g1 thenR?, = ¢’ L2 ¢, and

Ly, (¥) = ¢*Lg, (vy), Vi € C*(8Y).
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EXxistence of an extremal metric in the same class by
deformation? Parabolic approach: Introduceurvature
flow as

Oy = (R, — Ry)g. (2)
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EXxistence of an extremal metric in the same class by
deformation? Parabolic approach: Introduceurvature

flow as »
Org = (Rg — R(;)g. (2)

Along the flow we have

_ 1 _
O.RY = — [ (R} — R%)*do.

47 9
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EXxistence of an extremal metric in the same class by
deformation? Parabolic approach: Introduceurvature
flow as »

Org = (Rg — R(;)g. (2)

Along the flow we have

_ 1 _
O.RY = — [ (R} — R%)*do.

47 9

for some speciad.
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» curvature=1-curvature

asesy — | anda = 4 are of special interest.



Two cases and are of special interest.

The affine curvature of a closed strictly convex
curve = itsl-curvature:x(6) C R? (6 € [0, 2x]) be such a curve,
parameterized by the angldbetween the tangent line anehaxis.
The affine arc-length functiom() = foe k=2/3d0, wherek = k() is
the curvature. Then the affine curvaturexgb) is given

Yoo + k3) = (k3)3((k3)gg + k3).

Wl

k= k((k

W=

It coincides withl-curvatureR, , whereg, = (k3)~*df ® df.
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Affine curvature =1-curvature

One the other hand, giveis', ¢), write ¢ = u=*g,. Suppose.(6)
satisfies the orthogonal condition:

27 cos 0 2T sin 6@
df = df = 0. 3
[ =] = )

Definex () as

o = ([ 5 ), )

Thenx(6) is a closed strictly convex curve, and its affine curvatu

Is equal toR; .
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Therefore we have the following correspondece:

- Metric g = (k3)~%g, on S?

with curvaturek(6). ~ | with v = k3 satisfies (3)

| Close convex curve(0)

Affine curvaturex(6) 1-curvatureR;
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Therefore we have the following correspondece:

| Close convex curve(0) ] - Metric g = (k3)~*g, on S ]
with curvaturek(6). ~ | with v = k3 satisfies (3)
| Affine curvaturex(9) | ] 1-curvatureR; |

The zl-curvatureR;l can be viewed as the scalar curvature i
an analogous one-dimensional Yamabe flow.
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Therefore we have the following correspondece:

| Close convex curve(0) ] - Metric g = (k3)~*g, on S ]
with curvaturek(6). ~ | with v = k3 satisfies (3)
| Affine curvaturex(9) | ] 1-curvatureR; |

The zl-curvatureR;l can be viewed as the scalar curvature i
an analogous one-dimensional Yamabe flow.

NOW: flow method to find the extremal metrics for the cases 1

anda = 4. We denote?; by «.
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1-curvature flow

An analytic proof to the following general Blaschke-Saatgipe

Inequality, which implies that, is bounded above, and classifies a
the extremal metrics:

General Blaschke-Santald inequality
For u(f) € H'(S') andu > 0, if u satisfies the
,)then

27 27
u? — u?)db uw % (0)dh < Ar*,
( 7
0 0
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1-curvature flow

An analytic proof to the following general Blaschke-Saatgipe

Inequality, which implies that, is bounded above, and classifies a
the extremal metrics:

General Blaschke-Santald inequality
For u(f) € H'(S') andu > 0, if u satisfies the
,)then

27 27
u? — u?)db uw % (0)dh < Ar*,
( 7
0 0

and the equality holds if and only if

u(f) = c\/)\2 cos2(0 — a) + A 2sin*(0 — a).
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EXponential convergence

Theorem: Supposey, = u*(0,0)g, andu(f, 0) satisfies the
orthogonal condition (2)Then there Is a unique smooth solution tc
the flow equation

09 = (R —K)g, 9(6,0) = go(0)

for ¢ € [0, +00). Moreover,g(t) — g, exponentialiast — +oo,
and the 1-curvature af., IS constant.
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EXponential convergence

Theorem: Supposey, = u*(0,0)g, andu(f, 0) satisfies the
orthogonal condition (2)Then there Is a unique smooth solution tc
the flow equation

09 = (R —K)g, 9(6,0) = go(0)

for ¢ € [0, +00). Moreover,g(t) — g, exponentialiast — +oo,
and the 1-curvature o, Is constant.

Our 1-curvature flow= The normalized affine curve-shortening
flow,

X (0,1) = Xpq-
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e of the proof

e flowd,g = (K, — K4)g, we have

1 1
ke = -Ak+ k(k—FK), w =-(k—R)u,
4 4
1 1 1
Ut — 1U4Agsu + 1’&5 — ZEU



Outline of the proof

Along the flowd,g = (k, — x,)g, we have

1 1
ke = =Ak+ Kk(k—F), 1w =—-(k—FR)u,
4 4
.e.
1 1 1
Up = Zu‘lAgsu + ZU5 — Zﬁu.
Therefore

ﬁt/dazﬁt/u2d9=/%(%—/{)d0=0,

27 RT3 27
8,5/ u > () cos Odf) = — u () cos 0do.
0

4 0
It preserves the length and the orthogonality!
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once of the flow

g(t) satisfies the flow equation a0, 7'}, then we have

1
/<:t+/<;/<;——A/<;+/<; ZZA



EXiStence of the flow

Suppose)(t) satisfies the flow equation a0, 7'}, then we have

1

Kt + KKk = —A/{ + K ZA/{.
It follows from the maximum principle that
ft rdT

k > min k(o,0)e” Jo "7

theniu(o, t) = u(o,0) - ex o =R > &, (k(,0), ty) > 0.
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Suppose)(t) satisfies the flow equation a0, 7'}, then we have

1
Ky + Rk = —A/{ + K2 ZA/{.

It follows from the maximum principle that

k > min (o, 0)e =l

then:

Using the evolution equation ef and the orthogonal condition, we
can prove that there exiét = C(T') such that: < u < C.
Therefore, from tihat the solution exists
forall t € [0, 00).
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ergence of the flow

2, we define

27
Bt = [ = =Pdo = |lx =Rl



Convergence of the flow
Forp > 2, we define

21
Ft) = [l &Pdo = |lx = .
0

Direct computation yields

1

141 2T »
Oy < Cup)(Fyn + Fy + B 1) = Calp) [ (I = &% )2do
0
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Convergence of the flow
Forp > 2, we define

B = [ b Ado =l F,
0
Direct computation yields
O, < C1(p)(Fpi1 + F, +F 1) Cy(p) /O2W(|/£—E|%)id0.
Using Sobolev inequality and Young's inequality we have

1 1

1+
O F, < Co(p)(Fp+ EV + F, ' 7) — Cs(p)F3,

wheregs = 2 _3 > 1 and(,, C'5 are positive constants.
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ergence of the flow

ry = = [(k, — Ry)?do andr is bounded above, we have

T 4rm

/ Fy(t)dt < oo.
0]



Convergence of the flow

Sinced;r, = -~ [(k, — Fy)*do andr is bounded above, we have

/ Fy(t)dt < oo.
0

Using above two inequalities, Holder’s inequality and iotion, we
can prove the following Lemma:
Lemma: Foranyp > 2,

F,(t) — 0 ast — +o0 and / F,(t)dt < oo.
0
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Convergence of the flow

Sinced;r, = -~ [(k, — Fy)*do andr is bounded above, we have

/ Fy(t)dt < oo.
0

Using above two inequalities, Holder’s inequality and iotion, we
can prove the following Lemma:
For anyp > 2,

F,(t) — 0 ast — +o0 and / F,(t)dt < oo.
0

Then we estimatg’ozﬂ(m(,)Qda and obtain that

|k — R||p= — 0, ast — o0.
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nential Convergence

exponential convergence:
1
O0fy < (=5 +o(1))Fz,

pliesF;, < Ce* for someC, a > 0.



EXponential Convergence

To show exponential convergence.:
1
Of% < (=5 +o(1)) 2,

which impliesF, < Ce~* for someC, a > 0. Then from the flow

equation
1
Up = Z(/{) — R)u,
we can prove that(t) converges exponentially to someg, as
t — oo

Ju(t) =tz < Ce™/?,

and the 1-curvature af,, := u_*g, is constant. This completes the

proof of our main Theorem.
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Fora = 4, we have the similar theorem:

For an abstract curves!, ug—*g,), then there is a unique
smooth solution to the flow equation

g = (R, — RY)g, 9(6,0) = go(6)

for¢ € [0, +00). Moreover,g(t) — g, €xponentially a$ — +oo,
and the 4-curvature af,, Is constant.
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Fora = 4, we have the similar theorem:

For an abstract curves!, ug—*g,), then there is a unique
smooth solution to the flow equation

g = (R, — RY)g, 9(6,0) = go(6)

for¢ € [0, +00). Moreover,g(t) — g, €xponentially a$ — +oo,
and the 4-curvature af,, Is constant.

Along the ﬂowE;l IS always increasing,

—4 1 —4

8th — E (R4 — R )Qd(f.

g g
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Upper bound for (o = 4)

The upper unbound cﬁj follows from the following inequality:

Proposition: Foru(f) € H*(S*) andu > 0,

2m 1 2
/ (Su® — ug)dﬁ/ u*(0)do < 7,
o 4 0

and the equality holds if and only if

NOES C\/)\2 cOs?

for some)\, ¢ > 0 anda € |0, 27).
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()-Curvature

For any giverny on S we write g = v=*/3¢,, whereg, is the
standard metric. We define general)-curvatureon (S*, g) as

o’ 10«

Qy = (509999 + g Voo + v),

Q
wlon
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For any giverny on S we write g = v=*/3¢,, whereg, is the

standard metric. We define general on (S, g)
5 Q 10c
Q, =v3 (309999 + g Ve + v),

and the corresponding operator as

2
PO(f) = SO+~ (R, f) + Q5

whereR? is the of (S, g).

as
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For any giverny on S we write g = v=*/3¢,, whereg, is the

standard metric. We define genernal on (S, g) as
5 02 10cv
Q, =v3 (309999 + g Ve + v),

and the corresponding operator as

. o 10 . a
Pe(f) = AU + ==V (R3Vof) + Qs f,
whereR? is the of (S, g).

P Is a conformal covariant: i, = gp_%gl, then@y, = gnggO;gp and
D (87
Pl = 3 P2 (Yo), V.
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vature flows

ce of extremal metrics?

ea-()-curvature flow

(87

Oy = (Q5 — Q,)y-



¢)-curvature flows

Existence of extremal metrics?

Introducea-()-curvature flow

Org = (Qg — @j)g-

In such a setting, the above flow is again a gradient ro@fgf
Along the flow,Q, is always decreasing:

3

875@;— (Qa @a) g.
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Existence of extremal metrics?

Introducea-()-curvature flow

~«

Org = (Q(; — Qg)g'

In such a setting, the above flow is again a gradient ro@?g‘xf
Along the flow,Q, is always decreasing:

3 —a

81;@; ™ Sl(Q‘; — Qg)ZdJ'

Again, we are interested in two cases= 1 anda = 4.

Very recently, we prove the existence and convergence oftthe

curvature flow Iin these two cases. s, B557 B0 70



1-¢)-curvature flow

Hard part: the proof to the following inequality, which inngs that
Q_; IS bounded from below, and classifies all the extremal mstric
Blaschke-Santab inequality involving higher order derivative?
For u(0) € H*(S') andu > 0, satisfying the orthogonal condition

2T cosS 0 2T sin® 0
df = df = 4
| 7 (0) | )" =0 )
3

2T 2T
/ (ugy — 10up + 9u?)do ( / u_2/3(9)d9> > 1447,
0 0
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1-¢)-curvature flow

Hard part: the proof to the following inequality, which inngs that
Q_; IS bounded from below, and classifies all the extremal mstric
Blaschke-Santab inequality involving higher order derivative?
For u(f) € H*(S') andu > 0, satisfying the orthogonal condition

2T o5 0 2T sin® 0
df = df = 4
| 7 (0) | )" =0 )

2T 2T 3
/ (ugy — 10up + 9u?)do ( / —2/3(9)d9> > 1447,
0 0

=" holds if and only if

N

up(6) = ¢ (A cos?(0 — B) + A *sin*(0 — 3)) 2.
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Suppose the initial metrig, = v~3(6, 0)g, on
S! satisfies the orthogonal condition (4). Then there is
unique smooth solution to the flow equation

Org = (QL — Q,)g, 9(0) = go

fort € [0, +00). Moreoverg(t) — g, exponentially as
t — +oo, and the 1€)-curvature ofg., IS constant.
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vature flows

omputation shows that

o o o o
Qg — §A9Rg + (Rg)27

/ Q%do = / (R*)2do

plies



Direct computation shows that

(87 Qv (87 (87
Qg — gAgRg + (Rg)27
which implies
/Q;‘da = /(R;‘)Qda.
Therefore [ (R))*do is along thex-Q-curvature flow.

Thus thea-Q-curvature flow can be viewed as one dimensional
Caution: It is not trivial to see that[(RY)*do is

bounded below by a positive constant.
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Applications In Image processing
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Applications In Image processing
Top left: original image (with impulse noise).
Top right: affine image flow (10 steps).

Bottom left: affine image flow (20 steps).

Bottom right: our 4-th order image flow(10 steps).

Equation for affine flow:

W

D, = (DD, + PPy, — 20,P,P,,)5, P(0) = I(2,y).
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How does It work?

Consider contour curve for any > 0:

b(x,y) = C.
Move such curves simultaneously:

O((x(t),y(t),t) = C.
SO
(I)x'CEt+(I)y'yt—|—(I)t:O,

.e.
(I)t — _(xtayt) ; ((I)xa (I)y)
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Let F(t) = (z(t),y(t)) represent the curve.

Curve shortening flow is defined by

2, +P20,,—20,D,P,
Oy = e, 0n[0, +00) x ()

S(z,y,0) = I(x,y), I(X,y) initial image
various boundary condition
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Affine curve shortening flow

Affine shortening flow is defined by

2
Vo' [Ve|”

F, = K'3N = k3

—

S(x,y,0) =I(z,y), I(X,y) initial image

O, = (P20, + P2D,, — 20,D,P,,)"/*, on0, +o0)
various boundary condition

Nov. 2007, OU — p.28/



Thank you!



Total curvature
For fixed length (™ u=2d = 2r), B-S inequality—
2T
2w > / (u* — u3)db
0

2T
— / u’ (u + UQQ)U_QCZQ
0

2T
— / kdo.
0

r < 1.

Thus:
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Affine iIsoperimetric inequality
B-S Iinequality— for h > 0,

27 27
47r2/ h(h + hge)dd > [/ (h + hgg)3 dOT°.
0 0

Leth =< ,—N > be the supporting function of the
closed strictly convex curv& (6), thenh + hgg = 1/k,

ST(h+ hgg)3dd = [T k%/3d0 = o.

AlSo [ h(h + hgg)df = 2A.
SO

8m°A > o7,
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