3. Vertical format for subtraction

Negative coefficient notations:

$$2\hat{2} = 2 \times 10 - 2 \times 1 = 20 - 2 = 18;$$

$$3\hat{4}\hat{7} = 3 \times 10^2 - 4 \times 10 - 7 = 300 - 40 - 7 = 26\hat{7} = 253$$

$$\hat{5}\hat{8} = -5 \times 10 - 8 = -58 = \hat{6}2$$
 ®

Explanation:

In the above examples, we introduce **negative coefficient notations**:

- 10 represents a two-digit number where the ones place has a negative coefficient (-2), same as the traditional decimal number 18.
- 11) represents a three-digit number where the tens place has a negative coefficient (-3), same as 371 in the traditional decimal system.
- 12 represents another three-digit number with negative coefficients in both the tens place (-4) and ones place (-7), same as 253 in the traditional decimal system.
- 13 represents a two-digit number with negative coefficients in both the tens place (-5) and ones place (-8), which is the same as -58. This number can also be written using the new notation as 62.

Here are three examples.

Example 3.1. Using vertical form to calculate 32-14.

Solution:

	Tens place	Ones place	
	3	2	
	- 1	4	
Ones place		-2	13
Tens place	+ 2		15
			
Final answer	2	2 (= 18) 16

- 1. **Step (4):** Subtract the ones place digits: 2–4=–2. The result (-2) is placed in the ones column.
- 2. **Step** (5): Subtract the tens place digits: 3–1=2. The result (2) is placed in the tens column.
- 3. **Step (6):** Combining the results from Steps (14) and (15), we obtain $2\hat{2}$, which is the same as 18 in the traditional decimal system.

Example 3.2. Using vertical form to calculate 434-172.

	Hundreds	s Tens	Ones		
	4	3	4		
-	1	7	2		
			 -		
Ones place			2	①	
Tens place		4		18	
Hundreds +	. 3			19	
Final answer	3	4	2 (= 262)	20

- 1. **Step** ①: Subtract the ones place digits: 4–2=2. The result (2) is placed in the ones column.
- 2. **Step (8):** Subtract the tens place digits: 3-7=-4. The result ($\hat{4}$) is placed in the tens column.
- 3. **Step (9):** Subtract the hundreds place digits: 4–1=3. The result (3) is placed in the hundreds column.
- 4. **Step 20:** Combining the results from Steps 17, 18, and 19, we obtain 342, which is the same as 262 in the traditional decimal system.

Example 3.3. Using vertical form to calculate 451-183.

	Hundreds	Tens	Ones	
	4	5	î	
-	1	8	3	
Ones place			4	A
Tens place		3		B
Hundreds +	3			©
				•
Final answer	3	3	4	(= 266) [©]

- 1. **Step ext{@:}** Subtract the ones place digits: $\hat{1}$ $3 = \hat{4}$. The result $(\hat{4})$ is placed in the ones column.
- 2. **Step ®:** Subtract the tens place digits: 5-8= 3. The result (3) is placed in the tens column.
- 3. **Step ©:** Subtract the hundreds place digits: 4–1=3. The result (3) is placed in the hundreds column.
- 4. **Step ©:** Combining the results from Steps ②, ③, and ©, we obtain 334, which is the same as 266 in the traditional decimal system.

Example 4.3 (With Negative Coefficients and Carrying Numbers): Using vertical form to calculate 36×26 .

		Hundreds	Tens	Ones	
			3	6	
	×		2	6	
Ones-Ones			3	Ĝ	S
Ones- Tens		1	8		①
Tens-Ones		î	2		0
Tens-Tens	+	6			🛇
Final answe	er	6	3	6 (= 624) 🖤

- 1. **Step ©:** Multiply the ones place digits: $6 \times 6 = 36$. The result (36) is placed in the horizontal ones-ones place.
- 2. **Step \Phi:** Multiply the ones digit of the multiplier by the tens digit of the multiplicand: $6 \times 2 = 18$. The result (18) is placed in the horizontal ones-tens place.
- 3. **Step \mathbb{Q}:** Multiply the tens digit of the multiplier by the ones digit of the multiplicand: $2 \times \hat{6} = \hat{1}\hat{2}$. The result $(\hat{1}\hat{2})$ is placed in the horizontal tens-ones place.
- 4. **Step \odot:** Multiply the tens place digits: $2 \times 3 = 6$. The result (6) is placed in the vertical hundreds place and horizontal tens-tens place.
- 5. **Final Step :** Adding all the partial results together gives the final answer (636), which is the same as traditional decimal number 624 in the parenthesis.

Example 4.4. Using vertical form to calculate $4\hat{2}1 \times 21$.

		4	$\widehat{2}$	1
×			2	1
Ones-ones				1
Ones-tens			$\widehat{2}$	
Ones-hundreds		4		
Tens -ones			2	
Tens-tens		4		
Tens-hundreds +	8			
Final answer	8	0	0	1 .

9. Application for factorization

Example 9.1. 299 cf (2x+3)(x+3)

Meaning: The first term= $2 \times 1 = 2$, the cross term= $2 \times 3 + 1 \times 3 = 9$, the last term= $3 \times 3 = 9$.

So, we can factorize $299 = 23 \times 13$; Similarly: $2x^2 + 9x + 9 = (2x + 3)(x + 3)$.

Example 9.2: $25\widehat{3} (= 247)$ cf (x+3)(2x-1);

Meaning: The first term= $1 \times 2 = 2$, the cross term= $1 \times (-1) + 2 \times 3 = 5$, the last term= $3 \times (-1) = -3 = \hat{3}$.

So, we can factorize $25\hat{3} = 13 \times 2\hat{1}$ (=13×19). It is not easy to observe 247=13×19! Similarly: $2x^2 + 5x - 3 = (x + 3)(2x - 1)$.