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Recall, the following definition:

Definition: (covariant) functor
A (covariant) functor F': C' — D between categories C' and D consists of

e an object F(c) € Dforallce C
e a morphism F(f): F(c) = F(d)e Dforall f:c—>c €C
e satisfies the functorality axzioms:

— for any composable pair f,g € C, F(g) o F(f) = F(go f)

— foreach ce C, F(1.) = 1r()

Here I use the word ”covariant” because there is actually more than one type of functor between categories. I
define the other type, the contravariant functor, after I give one more explicit example of a covariant functor.

Both of Gordon Brown’s talks introduced many examples of covariant functors. I introduce one more es-
sential to the study of algebraic topology, the w1 functor.

Example: the m; functor

m is a functor between the category Top* and Group, m; : Top* — Group. We've seen Group before: the
objects are groups and the morphisms are group homomorphisms. The category Top* has topological spaces
with specified basepoints! as objects and basepoint preserving continuous functions as morphisms, i.e. m; sends
a continuous function f : (X,z¢) = (Y,y0) to a group homomorphism 71(f)? = n(X,z0) = m1(Y,y0). The
group that m; sends (X, zp), i.e. m(X, o) is called the fundamental group of X. Note that this definition is
suggestive that the choice of basepoint may not matter. I may sometimes omit the basepoint.

Intuitively, we can think of the fundamental group as the equivalence classes of loops that start and end at
the specified basepoint. Two loops are equivalent if we can ”deform” one loop to look like the other without
exiting the space. Consider the space R? — {0} (the zy-plane, omitting the origin). The loops drawn below are
in the same equivalence class, thus in the group 71 (R? — {0}, (1,0)) they are the same element.
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However, the loops that go around the origin, pictured below, are not equivalent to the loops in the first picture

1For example, an object is in T'op* is not just R, it has a point specified with it, e.g. (R,0). An example of a basepoint preserving
morphism is f : (R,0) — (R,1) where f(z) =3z +1
2Typically the notation to denote m1(f) is f«



since to "deform” loops in the first picture to look like loops in the second picture we must pass through the
origin.

On the other hand, when considering the object, (R, (1,0)) in T'op*, all of these loops are equivalent, since the
origin is now part of the space. Thus we have the following fact:

Fact: m (R, (1,0)) = m;(D?,(1,0))% = {0}, the group with one element.

It is beyond the scope of this talk to prove the following fact, so the below is stated without any convinc-
ing proof. If you're skeptical, please see Munkres: Topology, 2nd edition, p.345.

Fact: 7 (R?%,(1,0)) = 7 (ST, (1,0))* 2 Z.

Back to general functors. The functorality axioms can be used to prove an important theorem in Topology,
Brouwer’s Fized Point Theorem.

Theorem: Brouwer’s Fixed Point Theorem
Any continuous endomorphism® of a 2-dimensional disk has a fixed point.

Proof: Suppose f : D? — D? is an endomorphism such that there are no fixed points, i.e. f(x) # z for
all z € D?. Define r : D? — S! in the following way: make a ray starting at f(z) and passing through z. Let
7(z) be the point on the ray that intersects the boundary, S'. I've shown an example below.

7 is continuous® and fixes S*. Call i : S — D? the inclusion map and 7 o4 = idg1. Note that
mi(roi) = m(idg1) = idy, (g1) = idz using the 2nd functorality axiom
On the other hand, 7 (r) o m1(i) is a map:
m (SY) 5 1 (D) 5 wy(SY)

Since m (D?) = {0}, this gives that m(r) o m1(i) = 0. By the first functorality axiom, m;(r 0 4) = m(r) o w1 ().
Now we’ve received our contradiction. The idenity map on Z is certainly not the same as the constant map on

3Recall that D? is the 2-dimensional disk

4Recall, S! is the circle centered at the origin

5In Top* this is a continuous function from a space to itself

6Proof of continuity is messy and is not useful for this talk so is left out
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As promised, here’s the other type of functor:

Definition: contravariant functor
A contravariant functor F': C — D is a functor consisting of

e an object F'(c) € D, for all c€ C
e a morphism F(f) : F(c') = F(c) € D for all morphisms f:c— ¢
o satisfies the functorality axioms

— for any composable pair f,g € C, F(f)o F(g) = F(go f)
— forallce C, F(lc) = ]-F(c)
This definition varies from the covariant functor definition in the second and fourth bullet points. Instead of

mapping a morphism f : ¢ — ¢’ to a morphism from F(c) to F(c'), it maps it to a morphism from F(c’) to
F(c). With this comes that the ordering of bullet point four must be flipped as well.

To continue with the Topology theme of the talk I give an example of a contravariant functor, of which I
simply call O.

Example: the O functor
The functor O : Top — Poset carries a topological space X to its open sets. It takes a continuous function

f:X =Y tof1:00)— O(X) of which carries an open U C Y to its preimage f~(U) in X (also open by
continuity of f). A picture of O sending an object to an object is pictured below.
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In Group Theory there is a notion of two groups being isomorphic if there is a isomorphism between them. In
Topology two topological spaces are homeomorphic if there exists a homeomorphism between them. Now that
we have functors, we can think of them as morphisms between categories. Is there an similar type of functor
that gives some sort of isomorphism of categories?

To answer this question, I need to next introduce natural transformations. I've been informed that Paul
Plummer is going to be talking about natural transformations next week, so in order not to spoil his talk, I'll
try to keep it brief.

Definition natural transformation
Given categories C and D and functors F,G : C — D, a natural transformation a: FF — G consists of

e a morphism a, : F(c) = G(c) in D for each object ¢ € C so that for any morphism f : ¢ = ¢/, the
following diagram commutes:



Definition: natural isomorphism
A natural isomorphism is a natural transformation in which every « is an isomorphism.

Example: The functors O and C are naturally isomorphic.

Example 1: A natural isomorphism between F,G : C — D where C and D are groups regarded as one-
object categories is an isomorphism of groups.

Recall,

Definition: isomorphism
An isomorphism in a category is a morphism f: X — Y for which there exits a morphism ¢ : Y = X so
that gf = 1x and fg = ly.

Definition: equivalence of categories
An equivalence of categories consists of functors ' : C — D, G : D — C together with a natural
isomorphism n: lc 2 GoFande: Fo G =1p.

Definition: equivalent
Categories C and D are equivalent, C' = D, if there exists an equivalence between them.

Example: Consider a category C with one object ¢ and a single morphism 1. and a category D with two
objects di, dz with four morphisms, 14,, 14,, and two isomorphisms o : d; — dp and f : dp — d;. The
categories C' and D are equivalent, we can have F' map ¢ to dj, 1, to 14, and G map d; to ¢ and dy to c and
all morphisms to 1..

Nonexample: If C is the category above and D is the category above without the morphisms « and f,
then C and D are no longer isomorphic.

Before we introduce more equivalent categories we need a few more definitions:

Definition: full
A functor F': C — D is full if for each z, y € C,

HomC(I)y) — HOHID(F(CL'),F(:U))
is surjective.

Definition: faithful
A functor F': C — D is faithful if for each z, y € C,

HomC(wvy) - HOmD(F(iL'), F(y))
is injective.
Definition: essentially surjective on objects
A functor F': C — D is essentially surjective on objects if for every element d € D there is some ¢ € C

such that d is isomorphic to F'(c).

Example: The forgetful functor U : Grp — Set is faithful since each group maps to a unique set and the
group homomorphism maps to a unique set map. U is not full since not every set map is a group homomorphism.

Example: The example of the equivalence of categories above is essentially surjective, full, and faithful.



Note, sometimes we call a functor that is both full and faithful as fully faithful

Theorem:
A functor defining an equivalence of categories is full, faithful, and essentially surjective on objects. The
converse is true with the Axiom of Choice.

Definition: connected
A category is connected if any pair of objects can be ”connected” by a zig-zag of morphisms.

Corollary 1: Any connected category where every morphism is an isomorphism is equivalent as a category to
the automorphism group of any of its objects.

Fact: For any topological space X, m1(X) is a category where every morphism is basepoint preserving paths
up to homotopy equivalence in X and objects are points in X, called the fundamental groupoid. All morphisms

are isomorphisms.

Corollary: In a path-connected topological space X, any choice of basepoint x € X yields an isomorphic
fundamental group 7 (X, ).

Proof: Let x € X. The group of automorphisms on z € m;(X) is exactly m (X, x). From Corollary 1, ev-
ery automorphism group is equivalent to 7;(X). Thus for any z, m(X) is equivalent to m(X,z). From
Example 1, a pair of equivalences of one-object categories where the objects are regarded as groups is a group
isomorphism. Thus (X, z) & 71 (X, y) for all choice of basepoints z,y € X.

Corollary: The category 71(X) is equivalent as a category to m1(X, zo) recognized as a category.
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