1. Just plug in to check

2. Just plug in to check

3. $f(x,y) = x \ln y$ and $\frac{\partial f}{\partial y} = \frac{x}{y}$, and the point in question is (1,1). Both f and $\partial f/\partial y$ are continuous at the point, therefore there exists a unique solution.

4. $f(x,y) = x^2 - y^2$ and $\frac{\partial f}{\partial y} = -2y$, and the point in question is (0,1). Both f and $\frac{\partial f}{\partial y}$ are continuous at the point, therefore there exists a unique solution.

5. $f(x,y) = 1 + x^2 + y^2$ and $\frac{\partial f}{\partial y} = 2y$, and the point in question is (0,2). Both f and $\partial f/\partial y$ are continuous at the point, therefore there exists a unique solution.

- $6. \quad y = \tan\left(C x \frac{1}{x}\right)$
- 7. $y = C \sin x$

8.
$$y = -1 + \frac{1}{\sqrt[3]{C - 3\tan^{-1}x}}$$

9. $y = x^2 \sin x - 3x^2$

10. $y = \frac{1}{2} + 4(x^2 + 4)^{-\frac{3}{2}}$

11. $y = 3xe^{2x}$

12.
$$(x+e^y)^2 = 2x^2 + C$$

- **13**. $y = \sqrt[3]{Ce^x 3x^4 12x^3 36x^2 72x + 72}$
- 14. $2y + \sqrt{x^2 + 4y^2} = Cx^{\frac{3}{2}}$
- 15. Just plug in to check