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ABSTRACT

MICHAEL R. JABLONSKI: Real Geometric Invariant Theory and Ricci Soliton Metrics on Two-step

Nilmanifolds

(Under the direction of Patrick B. Eberlein)

In this work we study Real Geometric Invariant Theory and its applications to left-invariant geometry of

nilpotent Lie groups. We develop some new results in the real category that distinguish GIT over the reals

from GIT over the complexes. Moreover, we explore some of the basic relationships between real and complex

GIT over projective space to obtain analogues of the well-known relationships that previously existed in the

affine setting.

This work is applied to the problem of finding left-invariant Ricci soliton metrics on two-step nilpotent

Lie groups. Using our work on Real GIT, we show that most two-step nilpotent Lie groups admit left-

invariant Ricci soliton metrics. Moreover, we build many new families of nilpotent Lie groups which cannot

admit such metrics.
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Introduction

The goal of this work is to explore real Geometric Invariant Theory and some of its practical applications.

Our main interests involve the orbit structure of algebraic groups acting on varieties. In the affine setting

we are particularly interested in closed orbits. In the projective setting we are interested in the so-called dis-

tinguished orbits (cf. Definition 5.2). Specifically, we study actions of real and complex reductive groups on

vector spaces, projective spaces, and homogeneous spaces. We apply our results to the geometry of two-step

nilpotent Lie groups with left-invariant metrics.

In Chapter 2 we introduce the reader to the subject of Geometric Invariant Theory, over both R and

C. Let G be a (real or complex) reductive group acting linearly on V . Some main problems of interest are

the following. When is a particular orbit G · v is closed in V ? Does there exist a purely local criterion to

determine closedness of an orbit? When does there exist a Zariski open set of closed orbits?

In Chapter 3 we give a real version of Mumford’s Numerical criterion. This is a local criterion to

determine closedness of an orbit. Let G be a complex reductive group acting linearly on a complex vector

space V . A point v ∈ V is called stable if Gv is finite and G · v is closed in V ; more generally, we say that

a point v ∈ V is semi-stable if 0 6∈ G · v. In contrast, the null-cone consists of all points v ∈ V such that

0 ∈ G · v. The Hilbert-Mumford criterion compares the action of an algebraic group G with the actions of

all algebraic 1-parameter subgroups. This criterion can be summarized neatly using Mumford’s Numerical

function M : V → R as follows.

Theorem 3.15. Let G act on V and take v ∈ V . Then

(a) M(v) > 0 if and only if v is in the null cone

(b) M(v) = 0 if and only if v is semi-stable, but not stable

(c) M(v) < 0 if and only if v is stable

Over C this is Theorem 2.12 in the text. If instead we consider the action of a real reductive group G on a

real vector space V , then we can define a point v ∈ V to be real stable if Gv is compact and G ·v is closed (cf.

Definition 3.2). In the real setting one can define a numerical function M analogously. With these natural

adjustments to the real setting, we have obtained the above theorem in the real category, see Theorem 3.15.



This real version of the Hilbert-Mumford criterion obtains many more semi-stable representations that the

traditional criterion misses, see Sections 3.2 and 3.3.

One application of the theorem above is the following.

Corollary 3.10. Let v ∈ V be such that M(v) < 0. Then there is an open neighborhood O such that

M(w) < 0 for w ∈ O.

If M < 0 for some v 6= 0, it follows that there is a nonempty Zariski open set of points whose G-orbits

are all closed (cf. Proposition 2.8). We point out that this open set where M < 0 is in general only Hausdorff

open (cf. Example 3.20).

Chapter 4 is concerned with complex linear reductive groups G and the homogeneous spaces G/F which

are affine. It is well-known that G/F is affine precisely when F is reductive (this is Matsushima’s Criterion).

Let H be a reductive subgroup of G. We ask the following question: When is the orbit H · (gF ) closed in

G/F? We have obtained the following.

Theorem 4.1. Consider the induced action of H on G/F . Then generic H-orbits are closed in G/F ;

that is, there is a nonempty Zariski open set of G/F such that the H-orbit of any point in this open set is

closed.

Our proof uses Weyl’s Unitary Trick and exploits the beautiful interplay between real and complex

Geometric Invariant Theory. We do not know of this result in the literature and would be interested in a

proof that holds more generally for reductive groups over algebraically closed fields.

From this theorem we obtain some interesting corollaries in regards to intersections of reductive alge-

bras, linear actions of reductive subgroups, and stratifications of closed orbits by closed orbits of reductive

subgroups:

Corollary 4.3. Let G be a reductive algebraic group. If H,F are generic reductive subgroups, then

H ∩ F is also reductive. More precisely, take any two reductive subgroups H, F of G. Then H ∩ gFg−1 is

reductive for generic g ∈ G.

Corollary 4.4. Let G be a reductive group acting linearly on V . Let H be a reductive subgroup of G.

If G has generically closed orbits then H does also. Moreover, each closed G-orbit is stratified by H-orbits

which are generically closed.

We say that a representation V of G is good if generic G-orbits are closed in V .

Corollary 4.5. Let G be a reductive group, and let V and W be good G-representations, that is, generic

G-orbits are closed. Then V ⊕W is also a good G-representation.
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In Chapter 5 we move to the projective setting and study orbits à la Kirwan and Ness. Let G be a

(real or complex) reductive group acting linearly on a (real or complex) vector space V . This gives rise to a

well-defined action of G on PV .

A G-orbit in V is closed if and only if it contains a zero of the so-called moment map m̃ : V → g. Let G

be a real reductive group acting on a real space V , then the Zariski closure GC of G acts on V C = V ⊗ C.

Consider v ∈ V ⊂ V C. Borel-Harish Chandra/Richardson-Slodowy have shown that G · v is closed if and

only if GC · v is closed (see Chapter 2). We produce an analogue of this result for projective space; the

analogue of closed orbits for projective space are the so-called distinguished orbits.

To study projective space and the G-orbits therein, Kirwan and Ness study the norm squared of the

moment map ||m||2 : PV → R. A point [v] ∈ PV is called distinguished if it is a critical point of ||m||2; an

orbit G · [v] is called distinguished if it contains a distinguished point. We prove an analogue of the theorem

by Borel-Harish Chandra/Richardson-Slodowy for distinguished orbits (this theorem is a necessary tool for

the results in Chapter 7). Additionally, we prove a theorem on the behavior of the negative gradient flow

of ||m||2 (these theorems provide tools that are used in Chapter 8). We state these results here. In the

following theorems m : PV → g denotes the real moment map and CR denotes the critical points of ||m||2

while µ∗ : CP(V C)→ gC denotes the complex moment map and C denotes the critical points of ||µ∗||2.

Theorem 5.7 Given G � V , GC � V C, and [v] ∈ PV we have

G · [v] is a distinguished orbit in PV if and only if GC · π[v] is a distinguished orbit in

CP(V C).

Here π : PV ⊆ RPV C → CP(V C) is the usual projection.

Theorem 5.9 For x ∈ CP(V C), suppose GC · x ⊆ CP(V C) contains a critical point of ||µ∗||2. If

z ∈ C ⊆ CP(V C) is such a critical point, then C ∩GC · x = U · z. Moreover, U · z =
⋃
g∈GC

ω(gx).

Theorem 5.10 For x ∈ PV , suppose G · x ⊆ PV contains a critical point of ||m||2. If z ∈ CR ⊆ PV is

such a critical point, then CR ∩G · x = K · z. Moreover, K · z =
⋃
g∈G

ω(gx).

In Chapter 6 we introduce the reader to the basic results pertaining to left-invariant Ricci soliton metrics

on nilpotent Lie groups N . Consider the normalized Ricci flow ∂
∂tg = −2ric+ 2 sc(g)

n g, where ric is the (2,0)

Ricci tensor of g and sc(g) is the scalar curvature of g. Let g0 be a metric and consider a solution to the

normalized Ricci flow which is of the form g(t) = σ(t)ψ∗t g0, where σ(t) is a scalar function of time, ψt are

diffeomorphisms. When such a solution exists, we call the metric g0 a (homothetic) Ricci soliton.
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Let g be a left-invariant metric on N . J. Lauret has given the following algebraic characterization of

left-invariant Ricci soliton metrics on nilmanifolds. A nilpotent Lie group N with a left-invariant Ricci soli-

ton metric is called a nilsoliton.

Proposition 6.5. Let (N, g) be a nilpotent group N with left invariant metric g. Then g is a soliton

metric if and only if

ricg = cI +D

for some c ∈ R and some symmetric D ∈ Der(N).

In Chapter 7 we develop the basic theory to study two-step nilpotent Lie groups in the search for left-

invariant Ricci soliton metrics. Let N denote a nilpotent Lie group, N its Lie algebra, and [·, ·] the Lie algebra

structure on N. The group N and the algebra N are said to be two-step nilpotent if [N, [N,N]] = {0}. A

two-step nilpotent Lie algebra N is said to be of type (p, q) if dim[N,N] = p and codim[N,N] = q.

Here we study the action of GL(q,R) × GL(p,R) on so(q,R) ⊗ Rp à la Lauret. This action is defined

as follows. The group GL(q,R) acts on so(q,R) via g ·M = gMgt for g ∈ GL(q,R) and M ∈ so(q,R);

the group GL(p,R) acts on Rp in the usual way. Hence (g, h) · (M ⊗ v) = (gMgt) ⊗ h(v) for (g, h) ∈

GL(q,R)×GL(p,R) and M⊗v ∈ so(q,R)⊗Rp. In this setting an isomorphism class of algebras corresponds

to a GL(q,R)×GL(p,R)-orbit in so(q,R)⊗Rp. Our main result is the following. We point out that optimal

metrics are metrics which are nilsolitons with additional strong geometric properties (cf. Definition 7.7).

Theorem 7.25. A generic two-step nilmanifold admits a nilsoliton metric. Moreover, the types (p, q)

other than (1, 2k + 1), (2, 2k + 1), (D − 1, 2k + 1), (D − 2, 2k + 1) generically admit optimal metrics.

In Chapter 8 we produce two procedures for building new two-step nilsolitons from ‘smaller’ ones. The

first is called concatenation (see Section 8.2) and the second is direct sum (see Section 8.4).

Theorem 8.5. Consider q1 ≤ q2, D = 1
2q2(q2 − 1), and 1 ≤ p ≤ D with p 6= D − 1, D − 2. Let N1 and

N2 be generic nilsolitons of types (q1, p) and (q2, p), respectively. Then the concatenation N = V1 ⊕ V2 ⊕ Z

is also a nilsoliton.

Moreover, we produce a construction that generates many new examples of two-step nilalgebras which

cannot admit left-invariant Ricci soliton metrics. Our construction produces such algebras in most types

(p, q). This is the content of Proposition 8.10 and Section 8.4.
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Part 1

Representations and Orbit Structures



CHAPTER 1

Preliminaries

1. Algebraic Geometry

We present some of the tools from algebraic geometry that will be useful in our study of semi-simple

group actions and particularly the structure of their orbits. Our main references for algebraic geometry will

be [Bor91, Sha88, PV94] and [Whi57] for real algebraic geometry.

Consider affine space Cn. A set X in Cn is called an affine variety if X is the vanishing set of a collection

of polynomials {fα : Cn → C}. Varieties can be defined more generally; however, we will not need the more

abstract notion of variety and we restrict our attention to the affine setting. Associated to X we have the

ring of regular functions C[X]. These are all the functions from X to C that can be described by polynomials

(given a coordinate system on X).

Let X ⊂ Cn and Y ⊂ Cm be two (affine) varieties. A morphism f : X → Y is called regular if

f = (f1, . . . , fm) and each fi is a regular function on X. A regular function f : X → Y is equivalent to

having a comorphism f∗ : C[Y ]→ C[X] between their rings of regular functions. This comorphism is defined

via precomposition. It can be shown that two affine varieties are isomorphic if and only if their rings of

regular functions are isomorphic.

Our variety X is said to be defined over R if X can be described as the zero set of a collection of

polynomials with real coefficients. Here we have a fixed coordinate system for Cn; that is, we have a basis

{e1, . . . , en} and the space Rn ⊂ Cn is well-defined. The ring of regular functions of X being defined over

R means precisely that C[X] = R[X] ⊗R C, where R[X] is the ring of polynomials with real coefficients.

Likewise, we say that a morphism f : X → Y is defined over R if f∗ : R[Y ]→ R[X].

Let X be defined over R. We define the set of real points of X ⊂ Cn as X(R) := X ∩ Rn. This set is a

real algebraic variety in the following sense.

1.1. Real Algebraic Geometry. We say that a set X ⊂ Rn is a real algebraic variety if it is the zero

set of a collection of polynomials with real coefficients. Note that the ideal of polynomials that vanish on

X has many different sets of generators. We present some of the well-known and very useful results relating

the real and complex settings, see [Whi57] for proofs and more detail.

As X ⊂ Rn ⊂ Cn, we can consider the smallest (complex) algebraic variety containing X. This is the

Zariski closure of X in Cn which we denote by X. This variety X is defined over R by construction.
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Theorem 1.1. Let X be a real algebraic variety. We can write X as a finite union of irreducible

components. As in the complex setting this union is unique if the irreducible components are maximal.

Moreover, X has finitely many topological components. At the manifold or smooth points we have dimR X =

dimC X.

This is quite distinct from the complex setting. If X is a smooth, irreducible complex variety then viewed

as a manifold X is connected, see [Sha88, II.2.1 Theorem 6, VII.2 Theorem 1]

We will call a set a (real) semi-algebraic set if it is a union of some of the topological components of a

real algebraic variety. Some of these components might be real varieties themselves. Consider the following

example [Whi57, section 12]

Example 1.2. Consider the real variety cut out by f = x2 + y2 − y3 in R2. This zero set consists of

a curve and a point (the origin). Here the real variety has two topological components, one of which is a

variety (the point) and the other is not as f is irreducible over R.

We will demonstrate many more examples exhibiting this kind of behavior. In fact, we will be interested

in trying to detect/classify all the topological components that arise when our variety is the orbit of a

semi-simple group.

2. Lie Groups, Algebraic Groups, and Representations

Our main references for Lie groups will be [Hoc65, BtD95, Hel01]; for algebraic groups we use

[Hum81, PV94, Ser87, Bor91, Che55].

Let G be a group which is also an analytic manifold. Let µ : G × G → G and inv : G → G be the

multiplication and inverse maps, respectively. We call G a Lie group if these are analytic maps between

manifolds. The space of left-invariant vector fields on G is called the Lie algebra of G and is denoted by

L(G) or the gothic letter g. This vector space is isomorphic to TeG. The bracket structure (the algebra

structure) on g is the usual one when g ⊂ gln, that is, for X,Y ∈ g the bracket is [X,Y ] = XY − Y X.

Definition 1.3. Let G be a group which is also a variety over C. We say that G is a complex algebraic

group if µ and inv are regular maps between varieties. If G is a (Zariski) closed subgroup of some GLn(C)

then G is said to be a linear algebraic group.

Definition 1.4. Let G be a subgroup of GLn(R) which is also a real algebraic variety. We call G a real

algebraic group. Similarly, if G is a subgroup of GLn(R) and is just a semi-algebraic set, then we call G a

semi-algebraic group.

Our primary interest will be in linear algebraic groups over R and their real points (which are then real

algebraic groups). For a detailed exposition of algebraic groups over algebraically closed fields see [Bor91].

We will exploit much of the work that has been done over C to obtain information about algebraic groups

7



over R. The real algebraic groups of interest to us will all be linear groups, so we restrict our attention to

these.

Sometimes we will abuse terminology and refer to semi-algebraic groups as algebraic groups. It should

be clear from context which we mean. However, from the view point of our results there is no need to

distinguish between them.

Proposition 1.5. Let G be a real semi-algebraic group in GLn(R). Let GC denote the Zariski closure

over C of the set G in GLn(C). Then GC is a complex (linear) algebraic group defined over R such that

the set of real points GC(R) satisfies GC(R)0 ⊂ G ⊂ GC(R), where GC(R)0 denotes the Hausdorff identity

component. Moreover, the Lie algebras of these groups satisfy L(GC) = L(G)⊗ C and dimR G = dimC G
C.

Proof. As G is a semi-algebraic group, there is some real algebraic group H such that H0 ⊂ G ⊂ H,

where H0 is the Hausdorff identity component of H. The fact that the set GC is an algebraic group is the

content of [Bor91, Proposition 1.3]. Now the results stated above follow directly from Theorem 1.1 and the

observations that L(H) = L(G) and dimR H = dimR G. �

For such a group G as above, we call GC the (algebraic) complexification. This depends on the embed-

ding of G as an algebraic subgroup of GLn(R) and is not necessarily the universal complexification of G

as described by Hochschild [Hoc65, XVII.5]. For an example of different algebraic complexifications see

Example 1.13 and the remark thereafter.

Definition 1.6. Let GC denote a complex algebraic group. An algebraic one-parameter subgroup, or

1-PS, is a morphism of algebraic groups χ : C∗ → GC. Let G denote a real algebraic group. A real algebraic

1-PS is a (real) morphism of (real) algebraic groups χ : R∗ → G. (By a morphism of algebraic groups we

mean a homomorphism of groups which is a morphism of varieties.)

2.1. Special kinds of Lie algebras. Let g be a Lie algebra. We define the following basic notions;

see [Ser87] for more information. The lower central series of g is a descending series of ideals defined by

C1g = g

Cng = [g, Cn−1g]

for n ≥ 2. A Lie algebra g is called nilpotent if there exists k such that Ckg = 0; moreover, we call g k-step

nilpotent if k is the smallest integer such that Ckg = 0. The derived series of g is defined as the following

descending series

D1g = g

Dng = [Dn−1g, Dn−1g]

8



for n ≥ 2. The algebra g is said to be solvable if there is some k such that Dkg = 0. Similarly, we say that

g is k-step solvable if k is the smallest integer such that Dkg = 0. We say that G is nilpotent or solvable if

its Lie algebra is so.

Given a Lie algebra g we can consider the bilinear form B(X,Y ) = tr(ad X ◦ ad Y ) called the Killing

form. The algebra g is said to be semi-simple if B is non-degenerate. We say G is semi-simple if g is so.

Next we define the notion of a reductive algebra/group. We give the definition in terms of being a subgroup,

resp. subalgebra, of GLn, resp. gln, as this is the setting of primary interest to us. For a more intrinsic

definition of reductive see [Bor91].

Consider a closed subgroup G ⊆ GL(E) with finitely many connected components and its Lie algebra

g ⊆ gln. Let z denote the center of g. We say that G, or g = L(G), is reductive if g = [g, g] ⊕ z, [g, g] is

semi-simple, and z ⊆ gln consists of semi-simple endomorphisms. Reductive groups in this sense are precisely

the groups that are completely reducible, see [BHC62, section 1.2].

2.2. Representations of real groups. Let G be a Lie group. A (real linear) representation of G is

a continuous homomorphism of Lie groups ϕ : G → GLn(R). Similarly one can define a complex linear

representation. Our primary interest is in the representations of real semi-simple and reductive groups. For

complex semi-simple groups we have the following fundamental result.

Theorem 1.7. Let G be a connected complex semi-simple Lie group. Then

(a) There is a complex algebraic group structure on G, and one only, which is compatible with its

analytic group structure.

(b) If H is a complex algebraic group, every analytic homomorphism from G to H is algebraic.

See [Ser87] for more details.

This is in contrast to the real setting. Consider S̃L2R the simply connected cover of SL2R. Since this

group has infinite center it cannot be the real points of a complex linear algebraic group. However we have

the following result.

Proposition 1.8. Let G be a connected real semi-simple subgroup of GLnR for some n. Then G is a

real semi-algebraic group.

See [Che55, corollary of §§14]. An immediate consequence of this is the following.

Corollary 1.9. Let φ : G→ GLnR be a real representation of a connected semi-simple group G. Then

φ(G) is a real semi-algebraic group.

Proof. Since G is semi-simple, so is it’s image φ(G). Now the result follows from the proposition. �

Definition 1.10. Consider a complex algebraic group GC and a complex linear representation φ : GC →

GLn(C). The representation is called a rational representation if it is a morphism of algebraic groups; that

is, a homomorphism of groups which is also a variety morphism.
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Definition 1.11. Consider G a real (semi) algebraic group and GC its complexification. We say that a

representation φ : G→ GLn(R) is a rational representation if it is the restriction of a rational representation

φ : GC → GLn(C) which is defined over R.

In light of these propositions and corollaries it makes sense to have, at a minimum, a basic understanding

of algebraic groups, their representations, and algebraic geometry in general so that we can use all the tools

from this very rich geometric setting. We give some examples of Lie groups which are not algebraic groups

and how they can be very poorly behaved.

Example 1.12. Let T 2 = S1 × S1 be the compact 2-torus. Let G be the Lie subgroup of T 2 which is a

dense winding line. This subgroup is clearly not closed, but abstractly can be viewed as the algebraic group

R. We will present a (non-algebraic) representation of G whose orbits are not submanifolds.

Consider the representation φ : T 2 → GL4(R) where T 2 = S1 × S1 acts on R4 = R2 ⊕ R2 by the usual

S1 action on R2 in each slot. This representation is linear and the orbits here will be 2-tori. Now restrict

this representation to one on G = winding line. The orbits here will be winding lines contained in compact

tori, thus they do not inherit the subspace topology from R4.

We will see that this is in sharp contrast to the algebraic setting. Moreover, for later reference we point

out that this group G is also self-adjoint with respect to a certain inner product on R4. The next example

demonstrates that not all representations of real algebraic groups are forced to be algebraic. Again, this is

in contrast to the complex setting.

Example 1.13. Consider SL3(R) ⊂ SL3(C) and the adjoint representations Ad : SL3(k)→ Ad(SL3)(k) ⊂

GL(sl(3, k)), where k = R or C. Observe that Ad restricted to SL3(R) is one-to-one and so defines

an analytic isomorphism of Lie groups; that is, the center of SL3(R) is trivial. In contrast, SL3(C)

does have non-trivial center (of order 3) and so Ad : SL3(C) → PSL3(C) has nontrivial kernel. Note

Im(Ad(G)) ' G/Z(G), where Z(G) is the center of G.

Thus Ad−1 : Ad(SL3(R))→ SL3(R) is a well-defined homomorphism of Lie groups, but it cannot be the

restriction of a homomorphism between PSL3(C) and SL3(C).

Remark. This example also produces multiple ‘complexifications’ of SL3(R); namely, SL3(C) and

PSL3(C) both arise as the Zariski closure of SL3(R) depending on the algebraic structure, or imbedding,

placed on SL3(R). One can show that PSL3(R) = PSL3(C)(R), and it is obvious that SL3(R) = SL3(C)(R).

3. Real vs. Complex Algebraic Groups and Their Actions

Since every semi-simple subgroup of GLnR can be realized as a semi-algebraic group, we will state

the known results for complex algebraic groups over C and show how to go between the real and complex

categories. Unless otherwise said, we will assume that G is a semi-algebraic group and we denote its

complexification by GC.

10



Complex group orbits on a variety or vector space have some nice properties that we don’t enjoy over

the reals. For example, the Hausdorff and Zariski closures of a group orbit are the same for a complex linear

algebraic group. One property that does translate to the reals is that the boundary of an orbit consists of

orbits of strictly lower dimension. See section 8.3 of [Hum81] for the complex setting and see below for the

real setting. For some interesting examples of semi-simple real algebraic groups whose orbit closure is not

the Zariski closure see [EJ].

Proposition 1.14. Let GC be a complex algebraic group acting on a complex vector space V C; that is,

we have a linear representation φ : GC → GL(V C). Let v ∈ V C. The following are true.

(a) The Hausdorff and Zariski closures of GC · v coincide.

(b) The boundary ∂(GC · v) = GC · v −GC · v consists of GC orbits of strictly smaller dimension.

(c) The orbit GC · v is a locally closed, embedded submanifold. That is, GC · v is an open set of a closed

set. Moreover, this closed set is actually the variety GC · v.

Given a real vector space V we denote the complexification by V C = V ⊗ C.

Proposition 1.15. Let G be a semi-algebraic group and φ : G→ GL(V ) a rational representation. Let

φ also denote the representation GC → GL(V C) which restricts to G. Then for v ∈ V ⊂ V C the following

are true.

(a) The stabilizer subalgebras satisfy (gC)v = (gv)C

(b) dimR G · v = dimC G
C · v

(c) GC · v ∩ V =
m⋃
i=1

Xi where each Xi is a G-orbit.

(d) GC · v is closed in V C if and only if G · v is closed in V

(e) ∂(G · v) consists of G-orbits of strictly smaller dimension.

(f) GC · v ∩G · v = G · v.

(g) The orbit G · v is a locally closed, embedded submanifold.

Proof of a. The first claim is clear as gC = LGC = g⊗ C acts C-linearly on V C.

Proof of b. Notice that for a real Lie group H, H · v ' H/Hv. Let h be the Lie algebra of H. At the Lie

algebra level part (a) shows that (hv)C = (hC)v, for v ∈ V ⊆ V C. As dimR G = dimC G
C, we are done.

Proof of c & d. This can be found in [BHC62, Propsition 2.3] and [RS90].

Proof of e. The previous proposition states that the boundary GC · v − GC · v of the complex group

orbit GC · v consists of GC-orbits of strictly smaller dimension, see [Hum81, section 8.3]. Additionally,

GC · v
⋂
V =

m⋃
1

Xi, where each Xi is a G-orbit. Each Xi is closed in GC · v
⋂
V as it is a finite union of

connected components of GC · v∩V , see [BHC62, Proposition 2.3]. If v ∈ Xi for 1 ≤ i ≤ m, then G · v = Xi

and G · v∩GC ·v = Xi. If w ∈ G · v−G ·v, then w ∈ GC · v−GC ·v, and it follows from (b) and the previous

proposition above that G · w has smaller dimension than G · v.
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Proof of f. This follows immediately from (e) and its proof.

Proof of g. This follows from part (c) of the previous proposition and part (c) above. �

Definition 1.16. We say that two distinct orbits G ·v1 and G ·v2 are GC-conjugate or complex conjugate

if GC · v1 = GC · v2.

3.1. Stabilizer in General Position. Consider a complex algebraic group G acting linearly on V . A

subgroup G′ is called a stabilizer in general position, or s.g.p., if there exists an open set O of V with the

following property. Given v ∈ O there exists g ∈ G such that Gv = gG′g−1. The following theorem is due

to Richardson and Luna, cf. [PV94].

Theorem 1.17. Let G be a complex reductive (algebraic) group acting linearly and rationally on V .

Then the s.g.p. exists.

Over R there may not exist such a subgroup G′. In general, a real Zariski open set has many Hausdorff

components. In this way, there is usually not a single ‘generic’ item. However, we can make the following

simple observation.

Proposition 1.18. Let G be a real reductive group acting linearly and rationally on a real vector space

V . There exist a finite collection of Lie algebras {g1, . . . , gk} and a Zariski open set O of V such that for

v ∈ O the stabilizer gv is isomorphic to one of the algebras in {gi}. Here all the algebras {gi} have isomorphic

complexifications.

Remark. At the moment there is not a real analogue of Theorem 1.17 that we know of in the literature.

It would be interesting to prove the existence of a finite collection of real s.g.p’s. We intend to work on this

problem in the future.

4. Riemannian Geometry

We use as our main references for Riemannian geometry Helgason [Hel01] and do Carmo [dC92].

A manifold M is called a Riemannian manifold if there is a smooth metric g : TM → R on M , where

TM is the tangent bundle of M . We usually denote this pair by (M, g); sometimes we will interchangeably

use g or <,>. Every Riemannian manifold comes equipped with a compatible connection ∇ called the

Levi-Civita connection. Denote the set of smooth vector fields on M by V (M).

Given such a manifold, there exist basic geometric invariants. Of particular interest are the different

notions of curvature. The curvature tensor R of a Riemannian manifold is a correspondence that associates to

every pair X,Y ∈ V (M) a mapping R(X,Y ) : V (M)→ V (M) given by R(X,Y )Z = ∇Y∇XZ −∇X∇Y Z +

∇[X,Y ]Z for Z ∈ V (M). This is a tensor of type (3, 1). Equivalently we can consider the tensor of type (4, 0)

defined as (X,Y, Z, T ) =< R(X,Y )Z, T >.
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Given a 2-plane σ ⊂ TpM , and a pair of orthonormal vectors x, y ∈ σ, we can define the sectional

curvature of σ as K(σ) = (x, y, x, y). A manifold is called a manifold of constant curvature if K(σ) is

constant for all choices of σ ⊂ TpM and p ∈M . More generally, we can consider the Ricci curvature defined

as follows. Let x = zn ∈ TpM be a unit vector. We extend this to an orthonormal basis {z1, . . . , zn} of

TpM . The Ricci curvature at p is Ricp(x) = 1
n−1

∑
(x, zi, x, zi). This is an average of scalar curvatures of

all 2-planes containing x. A Riemannian manifold M is called an Einstein manifold if Ricp(x) is constant

for all choices of unit x ∈ TpM and p ∈M .

Example 1.19. Let G be a Lie group. A metric <,> is called left-invariant if < X,Y >g=< Lg−1∗X,Lg−1∗Y >e

for g ∈ G and X,Y ∈ TgG, where Lg−1 denotes left translation by g−1.

The set of left-invariant metrics is equivalent to the set of inner products on the Lie algebra L(G). A

problem of great interest is to find all solvable Lie groups with left-invariant Einstein metrics. See Chapter

6 for more information.
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CHAPTER 2

Closed Orbits of Semi-Simple and Reductive Groups

Let G denote a real linear semi-simple group with finitely many connected components; that is, G ⊂

GLn(R) for some n. Recall that G is semi-algebraic and we can consider the complexification of G, as defined

in Section 1.2, which we denote GC. Recall that GC ⊂ GLn(C) is a linear algebraic group and is the Zariski

closure of G in GLn(C).

More generally we can consider real linear reductive groups. We always assume that our linear groups

are closed subgroups and semi-algebraic or algebraic. The real reductive groups are products of semi-simple

groups having finitely many components and (algebraic) tori. Again, if G is a real reductive group then G

is a finite index subgroup of the real points GC(R) of a complex algebraic reductive group GC.

The following problems are of great interest to us. Let G be a real reductive group which acts on a

real vector space V , linearly and rationally, and let GC act on the complexification V C = V ⊗ C. Given

v ∈ V ⊂ V C we know that GC · v is a finite union of G-orbits, see Section 1.3.

Question 2.1. Consider GC · v ∩ V for v ∈ V . This is a finite union of G-orbits which are said to be

conjugate to each other. What are the G-orbits that appear in this intersection? Can they be classified using

semi-algebraic invariants?

A simpler question would be

Question 2.2. How many different G-orbits appear in GC · v ∩ V ?

Question 2.3. Which different diffeomorphism classes of orbits appear in GC · v ∩ V ?

Question 2.4. Which real stabilizers in general position appear? Or what are the different ‘generic’

diffeomorphism classes of orbits?

Recall that real stabilizers ‘in general position’ are only general in the Hausdorff sense and not in the

Zariski sense like the s.g.p of a complex reductive group, see Section 1.3.1.

Question 2.5. When is a G-orbit closed? Are there good criteria to determine this? Are there any local

criteria for determining closedness of an orbit?

Recall that any orbit of an algebraic group is a locally closed submanifold. Thus the problem of an orbit

being closed is a global problem; that is, we are asking about the embedding of the orbit as a submanifold. In
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this light, a local criteria to determine closedness of an orbit would be a welcome achievement. See Theorem

3.11 for a partial result which is the real analogue of Mumford’s Numerical Criteria.

1. Geometric Invariant Theory over C

Our main reference for Geometric Invariant Theory (GIT) will be Newstead [New78]. We aim to give

a brief introduction to some of the results of GIT and how they can be useful towards our study of closed

orbits. In this section, G will refer to a linear algebraic group over C and X will be an affine variety on

which G acts.

Definition 2.6. A categorical quotient of X by G is a pair (Y, φ) where Y is a variety and φ : X → Y

is a morphism such that

(a) φ is constant on the orbits of the action

(b) for any variety Z and any morphism ψ : X → Z which is constant on orbits, there is a unique

morphism χ : Y → Z such that χ ◦ φ = ψ

If in addition φ−1(y) consists of a single orbit for all y ∈ Y , then (Y, φ) is called an orbit space. We point

out that categorical quotients are uniquely determined up to isomorphism. This follows from the universal

property in the definition.

Given a variety X, recall that the ring of regular functions on X is denoted by C[X]. We will denote

the G-invariant functions by C[X]G. The following is [New78, Theorem 3.5].

Theorem 2.7. There exists an affine variety Y and a morphism φ : X → Y such that

(a) φ is G-invariant

(b) φ is surjective

(c) if U is open in Y , then φ∗ : C[U ]→ C[φ−1(U)] is an isomorphism of C[U ] onto C[φ−1(U)]G

(d) if W is a closed invariant subset of X, then φ(W ) is closed

(e) if W1,W2 are disjoint closed invariant subsets of X, then φ(W1) ∩ φ(W2) = ∅.

The variety Y above is often denoted by X//G. Moreover, the ring of regular functions is C[X//G] =

C[X]G. Conversely, X//G can be defined to be the isomorphism class of varieties whose ring of regular

functions is isomorphic to C[X]G. This quotient X//G from GIT is a categorical quotient, see [New78] for

details. The following is [New78, Proposition 3.8].

Proposition 2.8. Suppose G · v is a closed orbit of maximal dimension in a variety X. Then there

exists a Zariski open set O ⊂ X such that G · w is closed for w ∈ O.

Remark. Really, this result could have been stated in both directions. That is, if there exists such an

open set, then we can pick out a closed orbit of maximal dimension. The proposition gives a crude criterion
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for determining whether or not we generically have closed orbits. We say crude because in practice it is not

always easy to pick out a closed orbit of maximal dimension. Additionally, we show that this result holds

for real algebraic groups acting on real varieties.

Proof of 2.8 for real algebraic groups. Let X ⊂ V be a real variety contained in a real vector

space V ; that is, X is the zero set of a collection of real polynomials on V . Let G be a real algebraic group

acting on X; that is, G ⊂ GL(V ) is an algebraic subgroup of GL(V ) that acts on the space X.

Consider the complex vector space V C = V ⊗C and the Zariski closure XC of X in V C (cf. Section 1.1).

Let GC denote the Zariski closure of G in GL(V C); recall that GC is an algebraic group (cf. Section 1.2).

We claim that GC acts on XC. To see this, we denote the action of the groups G,GC by µ; that is,

µ : GC × XC → V C. This map is a regular map; that is, the map is continuous in the Zariski topology.

By hypothesis µ : G ×X → X ⊂ V ⊂ V C. The following is an easy exercise from point-set topology. Let

F : M → N be a continuous map and U ⊂ M , then F (U) ⊂ F (U), where U denotes the closure of U .

Applying this to µ we see that µ(GC ×XC) = µ(G×X) ⊂ µ(G×X) ⊂ X = XC. This shows that GC acts

on XC.

By hypothesis there exists some x ∈ X such that G · x is closed in X and has maximal real dimension.

Recall from Proposition 1.15 that dimR G · y = dimC G
C · y for all y ∈ X ⊂ XC; moreover, G · x is closed

in X if and only if GC · x is closed in XC. Consider the Zariski open set O ⊂ XC which consists of points

whose GC-orbit has maximal dimension. Since X is Zariski dense in XC, the set X ∩ O is nonempty and

Zariski dense in X. Moreover, the point x ∈ X ∩ O by the arguments stated in this paragraph.

We now have a point x ∈ X ⊂ XC whose GC-orbit is closed in XC and has maximal complex dimension.

The proposition being true over C implies there exists a Zariski open set O′ of XC consisting of points whose

GC-orbit is closed and of maximal complex dimension. Again using the arguments of the previous paragraph

X ∩ O′ is a nonempty Zariski open set consisting of points whose G-orbit is closed and of maximal real

dimension. �

Definition 2.9. Let G be a reductive algebraic group which acts on V . We say that v ∈ V is a G-stable

point, or just stable point, if G · v is closed and Gv is discrete. We say that v ∈ V is a semi-stable point if

0 6∈ G · v. We say that v ∈ V is good semi-stable if G ·v is closed. We say that v ∈ V is unstable if 0 ∈ G · v.

The set of unstable points is called the null cone.

There exists a general criterion for finding stable points. It is called the Hilbert-Mumford Criterion. Let

λ be an algebraic one parameter subgroup of G, or 1-PS for short. We know that λ is diagonalizable, see

[Bor91, 4.6]. Consider the eigenspace decomposition V = ⊕iVi. On each Vi, λ acts by λ(c) = cri for c ∈ C∗,

where ri ∈ Z. Now we define µ(v, λ) = min{ri|vi 6= 0}, where v =
∑
i vi, vi ∈ Vi, cf. [New78, pg. 104].

Definition 2.10. We call a point v ∈ V λ-stable if it is stable under the action of the group λ(C∗) ⊂ G.
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One can show that if µ(v, λ) ≥ 0 then λ(C∗) · v is not closed. However, if µ(v, λ) < 0 and µ(v, λ−1) < 0

then λ(C∗) · v will be closed. These two inequalities are equivalent to the point v being λ-stable. This result

can be seen easily from the geometric approach to GIT, see below. Next we state the criterion for stability.

Theorem 2.11 (Hilbert-Mumford Criterion). Let G be a reductive algebraic group acting linearly on a

complex vector space V . Then a point v ∈ V is G-stable if and only if it is λ-stable for all 1-PS λ of G. The

theorem remains true if we replace stable with semi-stable and relax our strict inequalities to just inequalities.

We can rephrase this theorem using a numerical criterion that encodes the information from all the 1-PS

simultaneously. Define M(v) = maxλ∈1−PS{µ(v, λ)}.

Theorem 2.12 (Hilbert-Mumford Numerical Criterion). Let G be a reductive algebraic group acting

linearly on V . Then

(a) M(v) < 0 if and only if v is stable

(b) M(v) = 0 if and only if v is semi-stable

(c) M(v) > 0 if and only if v is in the nullcone

This theorem gives a local criterion for determining when an orbit might be closed. That is, if M < 0

then the orbit is closed, if M = 0 then maybe, and if M > 0 then the orbit is not closed. In practice this

numerical criterion is very powerful and useful for finding stable points. However, we are interested in the

more general setting of finding generic closed orbits, or good semi-stable points.

In contrast to the stable situation, we have the following result from GIT.

Theorem 2.13. Let G be a complex reductive linear algebraic group acting linearly on V and take v ∈ V .

If G · v is not a closed orbit, then there exists an algebraic 1-PS λ such that λ · v is not closed. Moreover,

there exists v0 ∈ λ · v such that G · v0 is closed.

This theorem is also true for real algebraic reductive groups with λ being a real algebraic 1-PS. The

result over both R and C was proven by Birkes [Bir71].

2. GIT over R and the Geometric Approach

The geometric (metric) approach to GIT was first done in the complex setting by Kempf and Ness. Here

Hermitian inner products are put on a vector space in such a way that the group remains closed under the

metric adjoint operation. If an orbit is closed, then one can move along the orbit and come to the point

closest to the origin, such a point is called a minimal vector. The same ideas were introduced by Richardson-

Slodowy in the real setting to talk about closed orbits of real reductive groups. This seems to be the more

natural setting and we present their ideas below.

Let G ⊂ GLn(R) be a real semi-simple semi-algebraic group. Much of the geometry of G and its orbits

can be studied via the complexification of our real objects. Let GC ⊂ GLn(C) denote the complexification
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of G. Consider a rational representation ρ : G → GL(V ). By definition we know that ρ is the restriction

to G of some rational representation ρC : GC → GL(V C), where V C = V ⊗ C is the complexification of V .

Note: We will denote the induced Lie algebra representation by the same letter.

Cartan Involutions. Let E be a finite dimensional real vector space. A Cartan involution of GL(E)

is an involution of the form θ(g) = (gt)−1, where gt denotes the metric adjoint with respect to some inner

product on E. At the Lie algebra level this involution is θ(X) = −Xt.

Proposition 2.14 (Mostow [Mos55]). There exists a Cartan involution θ of GL(E) such that GC(R)

is θ-stable.

Proposition 2.15 (Borel, Proposition 13.5 [BHC62]). Let ρ : GC(R) → GL(V ) be a rational repre-

sentation. Let θ be a Cartan involution of GL(E) such that GC(R) is θ-stable. Then there exists a Cartan

involution θ1 of GL(V ) such that ρ ◦ θ = θ1 ◦ ρ.

This proposition is extended in the next proposition which follows from sections 1 and 2 of [RS90].

Proposition 2.16. Let G be defined as above and ρ : G→ GL(V ) a rational representation, then

(a) There exists a K-invariant inner product on V such that G is self-adjoint; hence, the Lie alge-

bra L(G) = g is also self-adjoint. Moreover, there exist Cartan involutions θ, θ1 on G, ρ(G),

respectively, such that ρ ◦ θ = θ1 ◦ ρ.

(b) There exist decompositions of G and g, called Cartan decompositions, so that G = KP as a product

of manifolds and g = k ⊕ p. Here K = {g ∈ G | θ(g) = g} is a maximal compact subgroup of G,

k = L(K) = {X ∈ g | θ(X) = X}, p = {X ∈ g | θ(X) = −X}, and P = exp(p). Moreover, there

exists an AdK-invariant inner product 〈〈·, ·〉〉 on g so that g = k⊕ p is orthogonal.

(c) Relative to the K-invariant inner product 〈·, ·〉 on V , ρ(X) is a symmetric transformation on V for

X ∈ p, and ρ(X) is a skew-symmetric transformation on V for X ∈ k.

The subspaces k and p that arise in the Cartan decomposition above have the following set of relations

[k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k

This is easy to see since k and p are the +1,−1 eigenspaces, respectively, of the Cartan involution θ. We

point out that our Ad K-invariant inner product on g restricts to such on p as the relations above show that

p is Ad K-invariant. Additionally, if the group G were semi-simple, then up to scaling the only choice for

〈〈·, ·〉〉 would be −B(θ(·), ·) on each simple factor of g, where B is the Killing form of G.

Our Cartan involution θ on G is the restriction of a Cartan involution on GC, see [RS90, 2.8 and section

8] and [Mos55]. This gives Cartan decompositions gC = u ⊕ q and GC = U · Q, where U is a maximal

compact subgroup of GC, Q = exp(q), and U ∩Q = {1}.
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We observe that the maximal compact groups U and K are related by U = KU0. To see this, it suffices

to prove KU0Q = UQ = GC since KU0 ⊆ U and U ∩ Q = {1}. Since U0Q = H0 and P ⊆ Q, we obtain

KU0Q = KP ·H0 = G ·H0 = H0 ·G = GC.

The subspaces u, q ⊆ gC are related to k, p ⊆ g as follows

u = k⊕ ip

q = ik⊕ p

These two subspaces of LGC = gC have a nice interpretation relative to a particular inner product on V C.

Our construction of this inner product on V C is similar to that done in sections 2 and 8 of [RS90]. We will

be consistent with their notation.

Proposition 2.17. The K-invariant inner product <,> on V , described in Proposition 2.16, extends

to a U -invariant inner product S on V C with a similar list of properties for GC. Additionally, the inner

product �,� on g extends to an Ad U -invariant inner product S on gC.

Proof. The proof of this fact follows the construction of S in the appendix A2 (proof of 2.9) in [RS90].

Define the inner product S on V C as

S(v1 + i v2, w1 + i w2) =< v1, w1 > + < v2, w2 >

In this way, V and iV are orthogonal under S and multiplication by i acts as a skew-symmetric transformation

on V C relative to S. S is positive definite on V C.

Recall that U = KU0 (see the remark above), and observe that S is K-invariant as K preserves V , iV

and <,> is K-invariant. Thus to show U -invariance, once just needs to show U0-invariance. This follows

since ρ(u) acts skew-symmetrically and U0 = exp(u).

From the definitions of u, q and S it follows that ρ(u) acts skew-symmetrically and ρ(q) acts symmetrically

relative to S. Lastly, the extension of <<,>> on g to S on gC is a special case of the above work.

�

We say that the inner products S, S on our complex spaces V C, gC are compatible with the inner products

<,>, <<,>> on the underlying real spaces V , g, respectively. The inner product S constructed here gives

rise to a U -invariant Hermitian form H = S+ iA on V C where we define A(x, y) = S(x, iy). This Hermitian

form is compatible with the real structure V in the sense of Richardson and Slodowy, that is, A = 0 when

restricted to V × V ; see sections 2 and 8 of [RS90].

Given the above decomposition of our real group G, one would like to understand how orbits tend not

to be closed, in a more refined way. Let G = KP be our Cartan decomposition. Clearly the K orbit of a

point will always be closed, as it is compact. This suggests then that the way in which an orbit tends to not
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be closed is very much related to P . The following is a refinement of Birkes’s Theorem, cf. Theorem 2.13;

see [RS90, Lemma 3.3] for the establishment of the following.

Lemma 2.18. Let v ∈ V and assume that G · v is not closed. Then there exists X ∈ p such that

limt→∞ exp(tX) · v = v0 exists and the orbit G · v0 is closed. Moreover, X is the tangent vector of an

algebraic one-parameter multiplicative R-subgroup of G.

Definition 2.19. A vector v ∈ V is a minimal vector for G if ||v|| ≤ ||g · v|| for all g ∈ G. Let M

denote the set of minimal vectors in V .

If G · v is a closed orbit, then clearly it contains a minimal vector. However, the converse is also true.

The following are Theorems 4.3 and 4.4 from [RS90].

Theorem 2.20. Let v ∈ V . The the following are equivalent:

(a) v ∈M

(b) the function Fv : G→ R, defined by Fv(g) = ||g · v||2, has a critical point at e ∈ G

(c) 〈X · v, v〉 = 0 for all X ∈ p

If v satisfies any of the conditions above, then Gv is self-adjoint (i.e., θ-stable).

Theorem 2.21. Let v ∈ V . Then the following are equivalent:

(a) the orbit G · v is closed

(b) G · v intersects M

If v satisfies any of the conditions above, then G · v ∩M is a single K-orbit.

These theorems demonstrate the value of an inner product on V under which G is closed under the

metric adjoint. Moreover, it gives a way of determining whether or not a particular G-orbit is closed, i.e.,

we can try to check to see if G · v contains a minimal vector. In light of the theorem above, we are looking

for vectors that satisfy 〈X · v, v〉 = 0, for X ∈ p. Equivalently, we could define the following function and

look for its zeros.

Definition 2.22. The moment map m̃ : V → p is defined by 〈m̃(v), X〉 = 〈X · v, v〉.

Rephrasing the above results in terms of this function we have:

Corollary 2.23. The set of minimal vectors is M = m̃−1(0).

Determining whether or not an orbit is closed is a global property of the orbit. Trying to determine

closedness at a point on an orbit is hard if we are not at a minimal vector. In Section 3.1 we obtain a criteria

which is local in nature, that is, uses only information about the point we are at, to determine closedness of

the orbit.
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3. Moment Maps

We recall the definition of the real moment map for the action of G on V . The motivation for these

definitions comes from symplectic geometry and the actions of compact groups on compact symplectic man-

ifolds. In the complex setting, this moment map coincides with the one from the symplectic structure on

CP(V C). For more information see [NM84] and [GS82].

Real moment maps. Given G � V we define m̃ : V → p implicitly by

� m̃(v), X � = < Xv, v >

for all X ∈ p. Notice that m̃(v) is a real homogeneous polynomial of degree 2. Equivalently, we really could

define m̃ : V → g; then using K-invariance and k ⊥ p we obtain m̃(V ) ⊆ p.

We can just as well do this for GC � V C where we regard GC as a real Lie group. We use the inner

products S on V C and S on gC. The (real) moment map for GC � V C, denoted by ñ : V C → q, is defined by

S(ñ(v), Y ) = S(Y v, v)

for Y ∈ q and v ∈ V C.

Since the polynomials m̃, ñ are homogeneous of degree 2, they give rise to well defined maps on (real)

projective space. Define

m : PV → p n : RPV C → q

m[v] = m̃( v
|v| ) = m̃(v)

|v|2 n[w] = ñ( w
|w| ) = ñ(w)

|w|2

where |w|2 = S(w,w) and S =<,> on V . Since V ⊆ V C we have PV ⊆ RPV C; this is our main reason for

studying the real moment map on GC. The next lemma compares these two real moment maps.

Lemma 2.24. n restricted to PV equals m.

Proof. Recall that n takes values in q = ik ⊕ p and m takes values in p ⊆ q. Take v ∈ V and X ∈ k

then

S(ñ(v), iX) = S(iX · v, v) = 0

as V ⊥ iV (see Proposition 2.17 ), and we are using (iX) · v = i(X · v), i.e., gC acts C-linearly on V C. Since

g ⊥ ig under S, we have ik ⊥ p. Thus ñ(v) ∈ p ⊆ q. Now take X ∈ p.

S(ñ(v), X) = � ñ(v), X � by compatibility of g ⊆ gC

||

S(Xv, v) = < Xv, v > by compatibility of V ⊆ V C

= � m̃(v), X � by definition/construction of m̃

Therefore, ñ(v) = m̃(v) for v ∈ V ⊆ V C, which implies n[v] = m[v] for [v] ∈ PV ⊆ RPV C. �
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Complex moment maps. We choose a notation that is similar to Ness [NM84] as we are following

her definitions; the only difference is that we use µ where she uses m. For v ∈ V C, consider ρv : GC → R

defined by ρv(g) = |g ·v|2, where |w|2 = H(w,w) = S(w,w). Define a map µ : CP(V C)→ q∗ = Hom(q,R) by

µ(x) = dρv(e)
|v|2 , where v ∈ V C sits over x ∈ CP(V C), cf. [NM84, section 1]. We define the complex moment

map µ∗ : CP(V C)→ q by µ = S(µ∗, ·). Note, taking the norm square of our complex moment map will give

us the norm square of the moment map in Kirwan’s setting; in Kirwan’s language iµ would be the moment

map [NM84, section 1].

Let π denote the projection π : RPV C → CP(V C).

Lemma 2.25. The complex and real moment maps for GC are related by µ∗ ◦ π = 2n

Proof. Many of our computations have the same flavor as those of Ness. We employ her ideas for the

reals. Take an orthonormal basis {αi} of iu = q under S. Also let x = π[v] ∈ CP(V C) for v ∈ V C. Then

µ∗(x) =
∑
i

S(µ∗(x), αi)αi

=
∑
i

[µ(x)αi]αi

=
∑
i

1
||v||2

dρv(e)(αi)αi

=
∑
i

1
||v||2

d

dt

∣∣∣∣
t=0

||exp tαi · v||2αi

Here the norm on V C is from H = S + iA. But S is the inner product being used on V C, and so H(w,w) =

S(w,w) tells us that µ∗(x)

=
∑
i

1
||v||2

2S(αiv, v)αi

=
∑
i

2 S(ñ[v], αi)αi

= 2ñ[v]

�

Remark. Since PV is not a subspace of CP(V C), we use RPV C and the real moment map of GC to work

between the known results of Kirwan and Ness to get information about our real group G � PV .

Examples of Moment Maps. Let G1, G2 be real reductive groups with the Cartan decompositions

Gi = KiPi and gi = ki ⊕ pi, for i = 1, 2. Then the group G = G1 ×G2 has Cartan decompositions G = KP

and g = k⊕ p, where K = K1 ×K2 and p = p1 ⊕ p2.

Proposition 2.26. Let G = G1 ×G2 act on V , and let m,m1,m2 be the moment maps for G,G1, G2,

respectively. Then m = m1 +m2.
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This is follows from the definitions and the fact that p = p1 ⊕ p2.

Let V = so(q,R)p := so(q,R) ⊕ · · · ⊕ so(q,R), p times. Let G = GL(q,R) act on V diagonally by

g · (C1, . . . , Cp) = (gC1gt, . . . , gCpgt). The Lie algebra g acts diagonally by X · Ci = XCi + CiXt.

On V we define the inner product < (C1, . . . , Cp), (D1, . . . , Dp) >= −
∑
traceCiDi. This is the canon-

ical extension of the canonical inner product on so(q,R). Under this inner product, G is self-adjoint and the

metric adjoint corresponds to the usual transpose. Hence k = so(q,R) and p = {X ∈ g : X = Xt}.

Example 2.27. Consider the action of G = GL(q,R) on V . For C = (C1, . . . , Cp) ∈ V ,

mG(C) = −2
∑p
i=1(Ci)2.

For the action of H = SL(q,R) on V and C ∈ V , we have mH(C) = mG(C)−λ(C)Iq = −2
∑p
i=1(Ci)2 − λ(C)Iq,

where λ(C) = 2|C|2
q .

We show this for the action of GL(q,R) first. Let X ∈ p and C ∈ V be given. For ξ, η ∈ g, we

use the inner product < ξ, η >= trace(ξηt) on g ⊂ M(q,R) and hence on p. Then for X ∈ p we have

< m(C), X >=< X(C), C >= −
∑
trace(XCi + CiX)(Ci) = −2

∑
traceX(Ci)2 =< X,−2

∑
(Ci)2 >.

To obtain the result for SL(q,R), observe that the set p consists of traceless symmetric q × q matrices.

As −2
∑p
i=1(Ci)2 − λ(C)Iq is traceless, the result follows from the work above.

Now consider V = so(q,R)p and observe that V is isomorphic to so(q,R) ⊗ Rp via the map C =

(C1, . . . , Cp) 7→
∑
Ci ⊗ ei, where {ei} is the standard basis of Rp. Let G = G1 ×G2 where G1 = GL(q,R)

and G2 = GLp(R), then G acts on V in the usual way; that is, for g = (g1, g2) ∈ G and C =
∑p

1 C
i ⊗ ei we

have

g · C = (g1, g2) ·
p∑
1

Ci ⊗ ei =
p∑
1

(g1C
igt1)⊗ g2(ei)

Here G2 acts on Rp in the standard fashion. Note, this action gives an action of SL(q,R)× SL(p,R) on V .

The previously used inner product on V now becomes the unique inner product on V = s(q)⊗Rp such that

< C ⊗ v,D ⊗ w >=< C,D >< v,w > for C,D ∈ so(q,R) and v, w ∈ Rp, where < C,D >= −trace(CD)

and <,> is the standard inner product on Rp for which the standard basis {ei} is orthonormal.

Observe that p = p1 ⊕ p2 and the moment map m : V → p becomes m(C) = (m1(C),m2(C)), where

mi : V → pi is the moment map for the action of Gi.

Example 2.28. Consider the action of G = GL(q,R) × GL(p,R) acting on V = so(q,R) ⊗ Rp defined

above. Then the moment map is given by mG(C) = (m1(C),m2(C)) where m1(C) = −2
∑

(Ci)2 as above

and m2(C) is defined component wise as m2(C)ij =< Ci, Cj >. We show that m2 is the moment map for

the action of GL(p,R) on so⊗ Rp.

For the action of H = SL(q,R)×SL(p,R) we have mH(C) = (m1(C)−λ(C)Iq,m2(C)−µ(C)Ip) where

m1,m2 are defined as above, λ(C) = 2|C|2
q and µ(C) = |C|2

p .

23



To see that the moment map is as described, by Proposition 2.26 we just need to check the action of G2 =

GL(p,R). If Y ∈ p2 and C =
∑
Ci ⊗ ei ∈ V are given, then < Y (C), C >= <

∑
Ci ⊗ Y (ei),

∑
Cj ⊗ ej >=∑

< Ci, Cj >< Y (ei), ej >= trace m2(C)Y =< m2(C), Y >. Hence m2 is the moment map for the action

of GL(p,R).

The result for H holds for the same reasons as in the previous example; that is, m1(C) − λ(C) and

m2(C)− µ(C) are traceless.

Example 2.29. Let V = Mn(R) denote the n× n matrices and let SLn(R) act by conjugation. This is

the adjoint action of GLn(R) acting on its Lie algebra. Given the usual inner products, from the trace form,

for C ∈ V the moment map is m(C) = CCt − CtC.

Observe that the Lie algebra g acts on V by X(C) = XC − CX for X ∈ p and C ∈ V . We compute

< m(C), X >=< X(C), C >= trace(XC − CX)Ct = traceX(CCt − CtC) =< X,CCt − CtC >. The

assertion follows as CCt − CtC is symmetric, traceless and hence belongs to p.

4. Comparison of Real and Complex Cases

Most of algebraic geometry and Geometric Invariant Theory has been worked out exclusively for fields

which are algebraically closed. We are interested in the real category and will exploit all the work that has

already been done over C. We use and refer the reader to [Whi57] as our main reference for real algebraic

varieties.

Recall that our representation ρ : G→ GL(V ) is the restriction of a representation of GC. The following

is proposition 2.3 of [BHC62] and section 8 of [RS90]. Originally this was stated as a comparison between

GC(R)0-orbits and GC-orbits, however, it can be restated as a comparison between G and GC orbits, for

any G satisfying GC(R)0 ⊆ G ⊆ GC(R). This is true as GC(R)0 has finite index in G. For more details see

Proposition 1.15. (Even though the contents of the following theorem are contained in the aforementioned

proposition, the theorem, as stated, is referenced later in the text.)

Theorem 2.30. Let v ∈ V , then GC · v ∩ V =
m⋃
i=1

Xi where each Xi is a G-orbit. Moreover, GC · v is

closed in V C if and only if G · v is closed in V .

Example 2.31. Consider the adjoint action of SL2(R) on sl2(R). The points

 0 1

−1 0

 and

0 −1

1 0


lie on different SL2(R)-orbits but lie on the same SL2(C)-orbit.

Remark. We thank Dima Arynkin for pointing out this example to us. Additionally, we observe that

there are two Hausdorff open sets det > 0 and det < 0 which are SL2(R) invariant and which are not

connected via SL2(C)-orbits. This is a very interesting phenomenon as it is well-known that generic points

from these two open sets have diffeomorphic SL2(C)-orbits, cf. Section 1.3 and the stabilizer in general

position.
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Proof. First we show that

 0 1

−1 0

 and

0 −1

1 0

 lie on different SL2(R)-orbits but lie on the same

SL2(C)-orbit. Observe that these vectors are both minimal for the action of G = SL2(R), cf. Example 2.29.

If they were to lie on the same SL2(R) orbit, then they would hence lie on the same K = SO(2) orbit by

Theorem 2.21. However, the elements of K commute with both vectors. Thus K fixes both vectors and they

cannot lie on the same K orbit. Hence they cannot lie on the same G orbit.

To see that these vectors lie on the same SL2(C) one uses the element

0 i

i 0

 to conjugate between

them. Lastly, we observe that SL2(C) preserves the determinant function, and hence this group does not

connect the disjoint open sets det > 0 and det < 0 of sl2(R). �

Example 2.32 (Sylvester’s Theorem). Let G = GLk(R) act on V = Symmk(R), the symmetric k × k

matrices, via g ·M = gMgt.

It is well-known (Sylvester’s Theorem) that for M ∈ V there exists g ∈ G such that gMgt is a diagonal

matrix consisting of 1’s, 0’s, and -1’s along the diagonal. This form is unique up to reordering. If p, n, z are

the number of positive, negative, and zero eigenvalues of M ∈ V , then p, n, z are constant along G-orbits

and equal the number of 1′s, −1′s, and 0′s in the diagonal, respectively. However, over the complex numbers

given M ∈ V C there exists g ∈ GLk(C) such that gMgt is diagonal with 1′s and 0′s along the diagonal; here

the number of 1′s is p+ n and the number of 0′s is z. Hence all M ∈ V C with the same number of nonzero

eigenvalues lie on the same GLk(C) orbit.

If we choose a generic matrix M , which is nonsingular, then there are exactly k real orbits that com-

prise GLk(C)·M∩V . These are the real matrices with p positive and k−p negative eigenvalues for 1 ≤ p ≤ k.

Orbits in Projective space. Since our groups act linearly on vectors spaces we can consider the

induced actions on projective space G � PV and GC � RPV C. The next result extends Proposition 1.15 (f).

Lemma 2.33. For v ∈ V , GC · [v] ∩G · [v] = G · [v] in RPV C.

Proof. The actions of R∗ × G and G on PV are the same; moreover, (R∗ × G)C = C∗ × GC. Given

v ∈ V take gn ∈ G and g ∈ GC such that [gnv]→ [gv] in PV . Then we want to show [gv] ∈ G · [v]. Now take

rn, r ∈ R such that rngnv, rgv have unit length in V C. We can assume rngnv → rgv by passing to −r and a

subsequence if necessary. Then rngnv → rgv ∈ C∗ ×GC · v ∩ R∗ ×G · v. Therefore, rgv ∈ R∗ ×G · v using

Proposition 1.15(f) and our result follows. �

25



CHAPTER 3

M-function and Stability of Representations

We begin this chapter by recalling the classical and well-known theorems for determining when one has

generically closed orbits. Then we present the real M -function, show how this is a generalization of the

Hilbert-Mumford criteria to real groups, and we show consistency for complex groups. That is, our new

criteria when applied to complex semi-simple groups gives precisely the Hilbert-Mumford criteria. Much of

the work in this section is joint with P. Eberlein [EJ].

Definition 3.1. Let G be a real, resp. complex, semi-simple algebraic group and ρ : G → GL(V ) a

linear rational representation where V is a real, resp. complex, vector space. We say that ρ is a stable,

semi-stable, or good semi-stable representation if it contains such a point, see Definitions 2.9 and 3.2.

Often we will simply say that a representation is ‘good’ if it is either stable or good semi-stable; that is,

if it contains a Zariski open set of closed orbits.

Remark. For complex groups, if there is one point which is stable, semi-stable, or good semi-stable, then

there exists a Zariski open set of such of points (see [New78, page 74]). For real groups this is true for

semi-stable and good semi-stable (cf. Proposition 1.15 and [New78, page 74]). We observe that if there

exist stable points in the complex representation, then there exist real points which are (complex) stable, in

fact there exists a Zariski open set of such points in V . However, for real stable points we can only guarantee

the existence of a Hausdorff open set of such points; in general this Hausdorff open set is not Zariski open,

cf. Example 3.20.

Definition 3.2. We say that a vector v ∈ V or its orbit G · v is (real) stable if G · v is closed and the

isotropy subgroup Gv is compact.

In the sequel stable will always denote real stable unless explicitly stated otherwise.

Remark. From this definition if a representation ρ : G→ GL(V ) is real stable, then the complex repre-

sentation ρ : GC → GL(V C) won’t necessarily be complex stable. However, the complex representation will

be good semi-stable. Moreover, we choose this terminology as it is consistent with the original definition of

stable if we regard a complex group GC as a real Lie group. For if G is a complex semi-simple group acting

on a complex vector space V , v ∈ V is said to be stable if G · v is closed and Gv is discrete. Since Gv is an

affine algebraic group, compact is equivalent to discrete (for complex algebraic groups).
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We have two goals. The first is to determine when an orbit G · v is closed. We would especially like to

do this locally, that is, with just information about v. The second goal is to determine when we generically

have closed orbits. We have already seen that G · v is closed if and only if GC · v is closed. In this way, we

can study complex groups to help work on the first goal. Additionally, since V is Zariski dense in V C, any

generic results obtained for GC acting on V C immediately translate back to results for G acting on V . So

again we can use complex groups to help work on the second goal.

Theorem 3.3. Let G be a real semi-simple group acting almost effectively on V ; that is, ρ : G→ GL(V )

has discrete kernel. If all the orbits are closed, then G is compact.

Proof. Let G be noncompact. If suffices to show that 0 ∈ Gv for some v 6= 0. The condition that G

act almost effectively is equivalent to the condition that the Lie algebra act effectively; that is, if X · v = 0

for X ∈ g and all v 6= 0, then X = 0. Consider the Cartan decomposition G = KP . Since G acts almost

effectively, given X ∈ p\{0} there exists v ∈ V such that Xv 6= 0. Since X is symmetric, v =
∑
λ∈Λ(X) vλ,

where Λ(X) is the set of eigenvalues of X and vλ is the component of v in the λ-eigenspace of X. Pick λ 6= 0

such that vλ 6= 0. Then exp(tX) · vλ = etλvλ and letting t→ ±∞ we see that vλ is in the null cone. �

Remark. The condition that G act almost effectively is very natural. For if G did not act effectively,

then we could consider the normal subgroup N which acts trivially. Then G and G/N (with the induced

action) have the same orbit structure. Note that this theorem is very special to semi-simple groups as it is

well-known that for any representation of a unipotent group all orbits are closed, see [PV94].

Let G be a reductive group. It is well-known that if G · v is closed, then the stabilizer Gv is reductive

(see [BHC62, Theorem 3.4]). For example, if w ∈ G · v is minimal, then Gw is self-adjoint by Theorem

2.20 and hence reductive. If w′ ∈ G · v, then Gw′ is conjugate to Gw. The converse is almost true and is

a theorem of V.L. Popov [Pop70]. This gives a good criterion in both the real and complex cases. Next

we state this general criterion for determining when a generic orbit is closed. Although Popov stated the

theorem over C, it is obviously true for real groups by complexifying all of our objects.

Theorem 3.4 (Popov). Let G be a semi-simple algebraic group acting (algebraically) on V . Then generic

orbits are closed if and only if the stabilizer in general position is reductive.

Remark. Popov’s proof uses algebraic geometry to obtain his results. We are interested in finding more

analytic proofs of these known results. At the moment we do not have a full proof of his result that avoids

algebraic geometry. However, our work on the real M -function obtains a criterion for generically closed

orbits without using high powered algebraic geometry (see Theorem 3.11).

1. M-function

Until otherwise stated we let G be a real semi-simple algebraic group acting on a real vector space V . Let

〈·, ·〉 be an inner product for which G is self-adjoint and let g = k⊕ p be a Cartan decomposition compatible
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with 〈·, ·〉. Let V0 and p0 denote the non-zero vectors in V and p, respectively. Take X ∈ p0 and let ΛX

denote the set of eigenvalues of X; for µ ∈ ΛX let Vµ,X denote the µ-eigenspace in V . For v ∈ V0 and X ∈ p0

let µ(X, v) denote the smallest eigenvalue µ such that the component of v in Vµ,X is non-zero.

The function µ : p0×V0 → R captures some of the action of G on V and we record two basic properties.

The first result is on non-negativity of the µ-function and the second is on semi-continuity.

Proposition 3.5. Let (X, v) ∈ p0 × V0.

(a) µ(X, v) = 0 if and only if the following hold

(i) The component v0 of v in Ker X is nonzero

(ii) exp(tX)v → v0 as t→ −∞

(b) µ(X, v) > 0 if and only if exp(tX)v → 0 as t→ −∞. That is, v is in the null cone.

Proof. We prove both results simultaneously. Let Λ′X denote the set of nonzero eigenvalues of X. For

v ∈ V we have v = v0 +
∑
λ∈Λ′X

vλ. By inspection µ(X, v) ≥ 0 if and only if λ > 0 for vλ 6= 0 and µ(X, v) > 0

if and only if v0 = 0 and λ > 0 for vλ 6= 0. The assertions of the proposition follow immediately since

exp(tX)v = v0 +
∑
λ∈Λ′X

etλvλ. �

Proposition 3.6. Let (X, v) ∈ p0 × V0. Given ε > 0 there exist neighborhoods U ⊂ V and O ⊂ p such

that µ(X ′, v′) < µ(X, v) + ε, for (X ′, v′) ∈ U ×O.

Proof. Suppose the proposition is false. Then there would exist an ε > 0 and a sequence (Xn, vn) →

(X, v) such that µ(Xn, vn) ≥ µ(X, v) + ε for all n. By passing to a subsequence we can assume there exists

an integer N with the following properties:

(a) For every n, Xn has N distinct eigenvalues {λ(n)
1 , . . . , λ

(n)
N } and there exist orthogonal subspaces

{V (n)
k } such that V = V

(n)
1 ⊕ · · · ⊕ V (n)

N with Xn = λ
(n)
i Id on V

(n)
i .

(b) There exist subspaces V1, . . . , VN of V and real numbers λ1, . . . , λN such that λ(n)
i → λi and

V
(n)
i → Vi. Since Xn → X we see that V = V1 ⊕ · · · ⊕ VN and X = λiId on Vi. Note, these λi are

eigenvalues of X and might not be distinct.

Choose k so that µ(X, v) = λk. Then v has a nonzero component in Vk. Thus there is some N0 such that

vn has a nonzero component in V
(n)
k for all n ≥ N0. Now we have λ(n)

k ≥ µ(Xn, vn) ≥ µ(X, v) + ε and since

λ
(n)
k → λk we obtain the contradiction µ(X, v) = λk ≥ µ(X, v) + ε. �

Definition 3.7. The function M : V → R is defined by M(v) = max{µ(X, v) : X ∈ p & |X| = 1}

This function has been considered by A. Marian [Mar01] in this context. A priori one can only define

the M function as a supremum, however, Marian has shown that it is a maximum over the unit sphere in p.

We present some of her results on the basic nature of M .

Proposition 3.8. The M -function has the following properties:
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(a) M is constant on G-orbits

(b) M takes finitely many values

(c) Let K be a maximal compact subgroup of G with Lie algebra k. Let A be a maximal abelian subalgebra

of p. Define MA : V → R by MA(v) = sup{µ(X, v) : X ∈ A & |X| = 1}. Then M(v) =

max{MA(kv) : k ∈ K}.

In [EJ] we have refined the study of the M -function and obtained many more useful results concerning

the orbit structure of representations of real semi-simple groups. Most importantly, we have derived a new

and useful criterion for determining closedness of an orbit using local information.

Proposition 3.9. Let v ∈ V . There exists an open neighborhood O of v such that M(w) ≤ M(v) for

w ∈ O.

Proof. Suppose the proposition is false for some non-zero v ∈ V . Then there exists a sequence {vn} ⊂ V

such that vn → v as n → ∞ and M(vn) > M(v) for all n. Since M has only finitely many values we may

assume, by passing to a subsequence, that M(vn) = c > M(v) for some real number c and all n. Choose

unit vectors Xn ∈ p such that c = M(vn) = µ(Xn, vn) for all n. By passing to a subsequence we may assume

that Xn → X, a unit vector in p, as n→∞.

Choose ε > 0 such that c > M(v)+ε. By Proposition 3.6 there exists N such that µ(Xn, vn) < µ(X,V )+ε

for n ≥ N . Hence c = M(vn) = µ(Xn, vn) < µ(X, v) + ε ≤M(v) + ε < c, which is a contradiction. �

Corollary 3.10. Let v ∈ V be such that M(v) < 0. Then there is an open neighborhood O such that

M(w) < 0 for w ∈ O.

The Geometric Significance of M < 0.

Theorem 3.11. The following conditions are equivalent for a nonzero vector v ∈ V :

(a) M(v) < 0

(b) v is stable; that is, the orbit G · v is closed and Gv is compact

(c) The map Fv : G→ [0,∞) is proper, where Fv(g) = |g(v)|2.

Remark. We observe that M(v) < 0 if and only if µ(X, v) < 0 for all nonzero X ∈ p. This is useful in

practice when working with M .

Before proving the theorem, we state a very useful proposition that is interesting in its own right.

Proposition 3.12. Consider the map fv : G → V defined by fv(g) = gv. The map fv is proper if and

only if G(v) is closed and Gv is compact.

Proof. Recall that G is a closed subgroup of GL(V ). One direction is clear and we omit the proof.

For, if fv is proper, then clearly G(v) is closed and Gv is compact.
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Suppose G(v) is closed, but that fv is not proper. We will show that Gv cannot be compact. Hence, if

G(v) is closed with Gv compact, then fv is proper.

By assumption, there exists an unbounded sequence {gn} in G such that {gn(v)} is bounded. As G is

self-adjoint, we may write gn = kn exp(Xn), where kn ∈ K and Xn ∈ p and |Xn| → ∞ as n→∞. Since K

is compact, it follows that exp(Xn)v → w ∈ V by passing to a subsequence if necessary.

Let Yn = Xn/|Xn|, tn = |Xn|, and let Yn → Y ∈ p, by passing to a subsequence if necessary. If fn(t) =

|exp(tYn)(v)|2 and f(t) = |exp(tY )(v)|2, then fn(t)→ f(t) for each t as n→∞. It is proved in Lemma 3.1

of [RS90] that the functions fn(t), f(t) are convex; that is, f ′′n ≥ 0 and f ′′ ≥ 0. By hypothesis fn(tn)→ |w|2

as n → ∞. By the convexity of fn(t), we conclude that fn(t) ≤ max{fn(0), fn(tn)} ≤ |v|2 + |w|2 + 1 if

0 ≤ t ≤ tn and n is sufficiently large. Hence f(t) ≤ |v|2 + |w|2 + 1 for t ≥ 0. It follows by convexity that f(t)

is nonincreasing on R.

Let Λ denote the set of nonzero eigenvalues of Y and let V = V0 ⊕
∑
λ∈Λ Vλ be the direct sum de-

composition of V into orthogonal eigenspaces of Y ∈ p, where Y = 0 on V0 and Y = λId on Vλ for all

λ ∈ Λ. Write v = v0 +
∑
vλ where vo ∈ V0 and vλ ∈ Vλ for λ ∈ Λ. Then exp(tY )(v) = v0 +

∑
etλvλ and

f(t) = |exp(tY )(v)|2 = |v0|2 +
∑
e2tλ|vλ|2. By the previous paragraph limt→∞ f(t) exists, and it follows

that λ ∈ Λ is negative if vλ 6= 0. Thus exp(tY )(v)→ v0 as t→∞. Moreover, Y (v0) = 0 as v0 ∈ V0.

We have shown that v0 ∈ Gv = Gv. Hence there exists g ∈ G such that v0 = gv. Since exp(tY ) ⊂ Gv0

we see that Gv0 and hence Gv is not compact.

�

Proof of the theorem. We prove (a) implies (b). If G(v) is not closed, then the map fv : G→ V is

not proper by the proposition above. By the proof of this proposition we know that there exists Y ∈ p such

that exp(tY )(v)→ v0 as t→∞, where v0 ∈ Ker Y . Thus µ(Y, v) ≥ 0 by Proposition 3.5; for the definition

of µ see the remarks preceding Proposition 3.5. Hence M(v) ≥ µ(Y, v) ≥ 0 which contradicts our hypothesis.

Thus G(v) is closed. Moreover, if Gv were not compact, then fv would not be proper and we would arrive

at the same contradiction.

We prove (b) implies (c). If Fv : G→ R is not proper, then fv : G→ V is also not proper. By the proof

of the proposition above, Gv would then not be compact which contradicts our hypothesis.

We prove (c) implies (a). Suppose that M(v) ≥ 0 and choose a unit vector Y ∈ p such that µ(Y, v) =

M(v) ≥ 0. Then by Proposition 3.5 exp(−tY )(v)→ v0 as t→∞, where v0 is the component of v in Ker Y .

Hence Fv : G→ [0,R) is not proper since Fv(exp(−tY ))→ |v0|2 as t→∞. This violates our hypothesis. �

An immediate and useful observation is that stability produces generically closed orbits.

Corollary 3.13. Suppose there exists a stable vector v ∈ V . Then there exists a nonempty Hausdorff

open set of stable points, and moreover there exists a nonempty Zariski open set of vectors whose orbits are

closed.
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Proof. Let v be stable, that is M(v) < 0. From Proposition 3.9 we see that there exists a Hausdorff

open set O so that M < 0 on O. We know that the set of orbits of maximal dimension is a nonempty Zariski

open set in V , and hence it intersects O. Thus we have the existence of a closed orbit of maximal dimension

by Theorem 3.11, and by Proposition 2.8 we know that there exists a Zariski open set of points whose orbit

is closed. �

Corollary 3.14. Let v ∈M ⊂ V be a minimal vector. The following are equivalent:

(a) M(v) < 0

(b) G · v is closed with Gv compact

(c) The moment map m : V → p has maximal rank at v

(d) If X(v)=0 for some X ∈ p, then X = 0

This corollary is useful in that if we find a minimal vector with one the properties listed above, then

we can guarantee the existence of generic closed orbits. For an application of this idea see Section 4 of this

Chapter. Moreover, one can actually calculate the dimension of the moduli space X//G using the above

information.

Proof. Assertions (a) and (b) are equivalent by Theorem 3.11 above. For v, η ∈ V and X ∈ p a routine

calculation shows that << m∗(ηv), Xm(v) >>= 2 < X(v), η >. Hence (c) and (d) are equivalent. We show

that (b) and (d) are equivalent. Since v is minimal, G · v is closed by Theorem 2.21. Now minimality implies

gv is self-adjoint by Theorem 2.20, and hence gv = kv ⊕ pv. Thus Gv is compact if and only if pv = {0},

which proves that (b) and (d) are equivalent. �

Now we can state our work above and see how it is the analogue of the Hilbert-Mumford criterion, cf.

Theorem 2.12.

Theorem 3.15. Let G act on V and take v ∈ V . Then

(a) M(v) > 0 if and only if v is in the null cone

(b) M(v) = 0 if and only if v is semi-stable, but not stable

(c) M(v) < 0 if and only if v is stable

Proof. The third part of the theorem was proven above. To prove the first we note that M(v) = µ(Y, v)

for some Y ∈ p0, |Y | = 1. Now if M(v) > 0, Proposition 3.5 shows that exp(tY )v → 0 as t→ −∞. That is, v

is in the null cone. If v is contained in the null cone then we know there exists Y ∈ p such that exp(tY )v → 0

as t→ −∞ (see Lemma 2.18). Now, Proposition 3.5 implies M(v) ≥ µ(Y, v) > 0. This proves (a); assertion

(b) follows immediately from (a) and (c). �

Proposition 3.16. Let G act on V and suppose there is a point v ∈ V such that Gv is compact. Then

generic orbits are closed and there is an open set such that M(v) < 0.

31



Warning! Even though Gv is compact, G · v might not be closed. See Example 4.6.

Proof. First we show that there is an open set such that Gw is compact. Recall that since G is an

algebraic group, the stabilizer Gw is an algebraic group and hence a group with finitely many connected

components. Thus, Gw is compact if and only if (Gw)0 is compact, where (Gw)0 is the Hausdorff identity

component.

Suppose such an open set did not exist. Then we would have a sequence of vn → v in V such that the

groups Gvn are not compact. Let d be a complete Riemannian metric on End(V ). Then Gv being compact

it has a diameter, say D. Since each (Gvn)0 is arc connected but not compact we can pick gn ∈ (Gvn)0 such

that dist(e, gn) = 2D. Now End(V ) being a complete metric space, and gn being a bounded sequence in

G, there exists a convergent subsequence converging to some g ∈ G. Passing to this subsequence we have

v = lim vn = lim(gnvn) = gv, which shows that g ∈ Gv. We have a contradiction as dist(e, g) = 2 diam(Gv).

Thus, there exists some open set O 3 v such that (Gw)0, and hence Gw, is compact for w ∈ O.

Let GC denote the complexification of G. Recall that GC acts on V C and has a stabilizer in general

position G′, s.g.p. That is, there is an open set U ⊂ V C such that GC
w is isomorphic to G′ for w ∈ U . Since

U ∩ V is a Zariski open set of V it intersects O.

Recall for v ∈ V ⊂ V C we have gC
v = (gv)C and gv is reductive if and only if gC

v is reductive. Hence,

the s.g.p is reductive since gv is compact and hence reductive for v ∈ U ∩ O. Now by a theorem of Popov

[Pop70] we have that generic orbits are closed.

Let A be a nonempty Zariski open subset of V such that G · v is closed for all v ∈ A. If v ∈ A∩O, then

M(v) < 0 by Theorem 3.11 (b). �

Remark. At the moment we do not have a proof of this result without using Popov’s theorem which

relates reductive s.g.p. and generically closed orbits. It would be very interesting to us and worthwhile to

find an analytic proof of the above result that avoids the algebraic geometry in Popov’s proof.

Closed subgroups in stable representations. If G acts stably on V , then one can say a lot about

the induced representations of closed subgroups.

Proposition 3.17. Let H be a closed subgroup of G and v a G-stable point, cf. Definition 3.2. Then v

is H-stable; that is, H · v is closed and Hv is compact.

Proof. Let w ∈ H(v) and let hn ∈ H ⊂ G be a sequence such that hn(v) → w as n → ∞. By (c) of

Theorem 3.11 we know that the hn converge to an element h ∈ G and since H is closed in G we have h ∈ H.

Thus w = h(v) ∈ H · v. That is, H · v is closed.

Now Hv = H ∩Gv is a closed subgroup of a compact group. Thus it is compact. �

Corollary 3.18. Let H be a semi-simple subgroup of G and v be a G-stable vector. Then v is H-stable.
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Proof. Recall the well-known result of Mostow that says semi-simple subgroups of semi-simple groups

are closed subgroups, see the main theorem in section 6 of [Mos50]. Hence H is closed in G, and we apply

the previous result. �

Remark. The above two results are special to the setting of stable vectors. There do exist representations

such that G(v) is closed but H(v) is not closed, where H is an algebraic reductive subgroup, see Example

4.6. However, for ‘generic’ v the above results hold true for reductive subgroups, see Chapter 4.

Suppose we have a representation of G which is stable. We know that the set of generic closed orbits

does not have to equal the set of stable points, see Example 3.20. In this example there exists a Hausdorff

open set of stable points but there also exists a Hausdorff open set of non-stable, good semi-stable points.

The set of generically closed orbits is a Zariski open set with, usually, many Hausdorff components.

Question 3.19. Suppose G acts on V and v is a stable point. Let w ∈ V be a GC conjugate of v, not

necessarily one of G. That is, there exists g ∈ GC so that w = gv. Let H be a closed subgroup of G. We

know, from the above, that H · v is closed. Is H · w also closed?

If H is semi-simple and w a minimal vector then the answer is yes, but in general we do not know. To

see this special case, one observes from [RS90, Lemma 8.1] that w will be a minimal vector for HC and

hence HCw will be closed. But then Proposition 1.15 tells us that Hw is closed.

2. Examples of Stability

Our first example will demonstrate two important aspects of real stability. First, there exist Hausdorff

open sets of stable points which are not Zariski open. Second, there are more, in fact many more, real stable

representations than complex stable representations. Thus our work truly generalizes the Hilbert-Mumford

Criterion.

Example 3.20. Adjoint Representation of SL2(R).

Let G = SL2(R) and V = g = {A ∈ M2(R) | traceA = 0}. The group G acts on V via conjugation.

Let <,> denote the inner product on V given by < A,B >= trace(ABt), where Bt denotes the transpose

operation in M2(R). For g ∈ G, the metric adjoint g∗ relative to <,> corresponds to the usual transpose gt.

Hence G is self-adjoint relative to <,>. Moreover, the Cartan involution is the standard one and g = k⊕ p

where k is the set of skew-symmetric matrices and p is the set of traceless symmetric matrices.

Proposition 3.21. Let O1 = det−1(−∞, 0), O2 = det−1(0,∞), and Σ = det−1(0), where det :

M2(R)→ R is the determinant function. Then

(a) The sets O1,O2,Σ are all G-invariant, V is their disjoint union, and the sets Oi are open in the

Hausdorff topology but not Zariski open.

(b) If M denotes the minimal set for the action of G on V , then M = k ∪ p.
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(c) G(A) is closed in V if A ∈ O1 ∪ O2. The null cone, or set of unstable points, is the set Σ.

(d) M(A) = 0 for all A ∈ O1, M(A) = −
√

2 for all A ∈ O2, and M(A) =
√

2 for all A ∈ Σ.

Proof. We omit the proof for (a) as it is clear.

Proof of (b). By Example 2.29 we know that A ∈M if and only if AAt = AtA. Since A ∈ M2(R) it is

easy to show by hand that A ∈M if and only if A is either skew-symmetric or symmetric.

Proof of (c). Recall that G(A) is closed if and only if G(A)∩M is nonempty. Part (c) now follows from

part (b) and the next result.

Lemma 3.22. Standard forms

(a) If A ∈ O1, then there exists g ∈ G such that g(A) = gAg−1 =

λ 0

0 −λ

 ∈ p, where λ =
√
|detA|.

(b) If A ∈ O2, then there exists g ∈ G such that g(A) = gAg−1 = ±

0 −λ

λ 0

 ∈ k, where λ =
√

detA.

(c) If A ∈ Σ, then there exists a sequence {gn} in G such that gn(A) =

0 λn

0 0

, where λn → 0 as

n→∞.

Proof of Lemma. For A ∈ V = g we recall that the characteristic polynomial of A acting in the usual

way on R2 is given by cA(x) = x2 + detA.

(a) If A ∈ O1, then A has eigenvalues ±λ, where λ =
√
|detA|. Let {v1, v2} be a positively oriented

basis of R2 such that A(v1) = λv1 and A(v2) = −λv2. Let g ∈ GL2(R) be an element with det g > 0 such

that g(vi) = ei, where {e1, e2} is the standard basis of R2. Write g = ch, where deth = 1 and c > 0. Then

h(A) = hAh−1 = gAg−1 =

λ 0

0 −λ

 ∈ p.

(b) If A ∈ O2, then A has eigenvalues ±iλ, where λ =
√

detA. Let v1, v2 ∈ R2 be vectors such that

A(v1 + iv2) = iλ(v1 + iv2). Then the vi are linearly independent and A(v1) = −λv2 and A(v2) = λv1.

Hence A has matrix

 0 λ

−λ 0

 relative to the basis {v1, v2} of R2. Depending on the orientation, choose

g ∈ GL+
2 (R) such that g(v1) = e1 and g(v2) = ±e2. In either case, choose c > 0 and h ∈ G such that g = ch.

Then we obtain hAh−1 = gAg−1 = ±

 0 λ

−λ 0

.

(c) If A ∈ Σ, then A2 = 0. As above, we can arrange for A to have the matrix hAh−1 =

0 ±1

0 0

, for

some h ∈ G, relative to the correct choice of basis. Now consider hn =

1/n 0

0 n

 ∈ G. Then conjugation

by hnh yields

0 ±n−2

0 0

. This produces the claimed result and the lemma is proven.
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We finish the proof of the proposition by showing part (d). Let H0 =

1 0

0 −1

, X =

0 1

0 0

, and

Y =

0 0

1 0

. Then {H0, X, Y } is a basis of g such that [H0, X] = 2X, [H0, Y ] = −2Y, [X,Y ] = H0. The

space p is 2-dimensional and the 1-dimensional maximal compact subgroup K ≈ S1 acts transitively on the

spheres (circles) of fixed length vectors in p. If H ∈ p, then H has eigenvalues ±λ for some real number λ,

and |H|2 = trace(H2) = 2λ2. It follows that H is a unit vector in p if and only if H has eigenvalues ±
√

2/2.

In particular, if H is any unit vector in p, then there exists k ∈ K such that kHk−1 = H0/
√

2.

We show that M(A) =
√

2 if A ∈ Σ. The argument in the proof of c) of the lemma above shows that

for any A ∈ Σ there exists g ∈ G and λ ∈ R such that gAg−1 = λX. Hence M(A) = M(λX) = M(X) and

it suffices to prove that M(X) =
√

2.

Note that µ(H0, X) = 2 since [H0, X] = 2X. Hence µ(H0/
√

2, X) =
√

2. Now let H be an arbitrary

unit vector in p and let k ∈ K be an element such that kHk−1 = H0/
√

2. Choose a real number θ

such that k =

cos θ − sin θ

sin θ cos θ

. Then kXk−1 = − sin θ cos θH0 + cos2 θX − sin2 θY . If sin θ 6= 0, then

µ(H,X) = µ(kHk−1, kXk−1) = µ(H0/
√

2, kXk−1) = −
√

2. If sin θ = 0 then k = ±Id and in this case

µ(H,X) = µ(H0/
√

2, X) =
√

2. Thus, M(X) =
√

2.

Next we show that M(A) = −
√

2 for all A ∈ O2. For A ∈ O2 we write A =

a b

c −a

 = aH0 + bX+ cY

for suitable real numbers a, b, c. By hypothesis a2 + bc = −detA < 0, and hence b, c are always nonzero. It

follows by inspection that µ(H0, A) = −2 and hence µ(H0/
√

2, A) = −
√

2. If H is a unit vector in p, then

kHk−1 = H0/
√

2 for some k ∈ K and µ(H,A) = µ(H0/
√

2, kAk−1) = −
√

2. Hence M(A) = −
√

2.

Lastly we show M(A) = 0 for A ∈ O1. Since A has eigenvalues ±λ there exists g ∈ G with gAg−1 =

λH0. Hence M(A) = M(gAg−1) = M(λH0) = M(H0). It suffices to prove that M(H0) = 0. Note that

µ(H0/
√

2, H0) = 0 as H0 ∈ Ker H0. If H is any unit vector in p then choose k =

cos θ − sin θ

sin θ cos θ

 ∈ K
such that kHk−1 = H0/

√
2. Then µ(H,H0) = µ(kHk−1, kH0k

−1) = µ(H0/
√

2, cos(2θ)H0 + sin(2θ)X +

sin(2θ)Y ). If sin(2θ) 6= 0, then µ(H,H0) = −
√

2. If sin(2θ) = 0, then kH0k
−1 = ±H0, and µ(H,H0) =

±µ(H0/
√

2, H0) = 0. Hence M(H0) = max{µ(H,H0) : H ∈ p, |H| = 1} = 0.

Example 3.23. Let V be a representation of SL2(R). If V contains no trivial factors and dimV ≥ 3

then the representation is stable.

This result follows from a much more general construction called the Index Method. See Propositions

3.31 and 3.32 and also Section 4 of [EJ].

Example 3.24. Adjoint representations.
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All stable adjoint representations have been classified in [EJ]. There it is shown that “most” adjoint

representations are stable. We do not present the details, rather we refer the reader there.

Example 3.25. The action of SL(q,R) × SL3R on so(q,R)3 for q 6= 3, 6 is stable. This follows from

Section 3.4. Here the geometry of nilmanifolds is employed to obtain new examples of minimal vectors and

stability.

Remark. For the stability of case q = 6, see Example 2 of [EJ, Appendix 2]. It is known that the case

q = 3 is not stable for more general reasons, see Theorem 3.44.

Inheritance of Stability. We finish this section with some methods to build stable representations

via summing and tensoring representations.

Proposition 3.26. Let V = ⊕Vi be a direct sum a G-representations. If one summand is G-stable (cf.

Definition 3.2), then the whole sum is G-stable.

Proof. It suffices to prove this for the sum of two representations V,W . Take v ∈ V which is stable.

Then (v, 0) ∈ V ⊕W has a closed G-orbit and compact stabilizer. Hence, (v, 0) is a stable point in V ⊕W . �

Proposition 3.27. Consider two G-stable representations V,W . Then V ⊗W is also stable.

Proof. Let v ∈ V and w ∈ W be stable points. We show that the vector v ⊗ w is a stable point in

V ⊗W .

Since v, w are stable points we have M(v) < 0 and M(w) < 0. Choose X ∈ p with |X| = 1 so that

M(v⊗w) = µ(X, v⊗w). The X-eigenspace decomposition for v⊗w is
∑
vλ⊗wµ, where v =

∑
vλ and w =∑

wµ are the X-eigenspace decompositions of these vectors. Since X(vλ⊗wµ) = (Xvλ)⊗wµ+vλ⊗(Xwµ), we

see that vλ ⊗wµ has eigenvalue λ+ µ. Now µ(X, v) ≤M(v) < 0 and µ(X,w) ≤M(w) < 0, and hence there

exists λ < 0 and µ < 0 with vλ and wµ both nonzero. It follows that M(v ⊗w) = µ(X, v ⊗w) ≤ λ+ µ < 0.

Thus v ⊗ w is a stable point. �

The next proposition follows the tradition in representation theory of semi-simple groups to understand

representations of G by understanding the representations of its simple factors. If G = G1 × · · · × Gk is

a semi-simple group, then an irreducible representation of G is V1 ⊗ · · · ⊗ Vk, where Vi is an irreducible

representation of Gi.

Proposition 3.28. Let V1 and V2 be stable representations of G1 and G2, respectively. Then V1⊗V2 is

a stable representation of G1 ×G2.

Remark. Notice this does not follow from the proposition above. However, the proof is analogous so we

omit the details.
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3. The Index Method

In this section we are interested in the following question.

Question 3.29. Given two representations V,W of G, when is V ⊗W a ‘good’ representation? (cf.

Definition 3.1)

The Index Method gives a partial answer to this question. As Proposition 3.27 shows, if V and W are

G-stable, then so is V ⊗W . However, there are many representations V ⊗W which are G-stable with V,W

ill-behaved; e.g., cf. the tables of [KL87].

For a nonzero element X ∈ p let IG(X) denote the largest dimension of a subspace W of V on which X

is negative definite. Let IG(V ) = min{IG(X) : 0 6= X ∈ p}. We call IG(V ) the index of G acting on V .

Observe that since G is semi-simple, every element of p has trace zero. Hence, for nontrivial representations

V , each X ∈ p has a negative eigenvalue which implies IG(V ) ≥ 1.

At the moment, the definition of the index seems to depend on our choice of inner product under which

G is self-adjoint. The following proposition shows that this is not so.

Proposition 3.30. The index of G acting on V does not depend on the choice of G-compatible inner

product <,>.

Proof. Let <,>1 and <,>2 be two G-compatible inner products on V , and g = k1⊕p1 and g = k2⊕p2

denote the corresponding Cartan decompositions. It is well-known that there exists g ∈ G such that k2 =

Ad(g)k1 and p2 = Ad(g)p1; see, e.g., Theorem 7.2 of Chapter III in [Hel01]. Since X and Ad(g)X acting on

V have the same eigenvalues, it follows that I1
G(X) = I2

G(Ad(g)X). Hence I1
G(V ) = I2

G(V ). �

Proposition 3.31. Let K denote a maximal compact subgroup of G. If IG(V ) > dimK, then {v ∈ V :

M(v) < 0} is an open set of V with full measure in V .

Proof. We carry out the proof in several steps.

(1) Weight space decomposition of V .

Let<,> be an inner product relative to whichG is self-adjoint. Let g = k⊕p be the Cartan decomposition

of g defined by the Cartan involution θ : g → (gt)−1. Fix a maximal abelian subspace A of p. It is well-known

tha every maximal abelian subspace of p has the form Ad(k)A for some k ∈ K, and every element of p lies

in some maximal abelian subspace of p. The elements of p are symmetric with respect to <,>, and hence A

is a commuting family of symmetric linear maps on V .

For λ ∈ A∗ let Vλ = {v ∈ V : X(v) = λ(X)v for all X ∈ A}. If Λ = {λ ∈ A∗ : Vλ 6= 0}, then Λ is a

finite set, called the weights of the representation, and we obtain the weight space decomposition
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V = V0 +
∑
λ∈Λ

Vλ

where V0 =
⋂
X∈A

Ker X.

(2) The subspaces V +
X and V −X

For a nonzero element X ∈ A, we let Λ+
X = {λ ∈ Λ : λ(X) > 0} and Λ−X = {λ ∈ Λ : λ(X) < 0}.

We define V +
X = V0 ⊕

∑
λ∈Λ+

X
Vλ and V −X =

∑
λ∈Λ−X

Vλ. The following assertions follow routinely from the

definitions:

(a) µ(X, v) ≥ 0 for some nonzero X ∈ A if and only if v ∈ V +
X .

(b) IG(X) = dimV −X .

(c) V = V +
X ⊕ V

−
X .

(3) There exists a finite set of nonzero vectors {X1, . . . , Xn} ⊂ A such that for every nonzero X ∈ A there

exists 1 ≤ i ≤ N such that V +
X = V +

Xi
.

Since Λ is a finite set, the number of distinct subsets {Λ+
X : 0 6= X ∈ A} is also finite. Choose nonzero

elements {X1, . . . , XN} ⊂ A such that for every nonzero X ∈ p there exists 1 ≤ i ≤ N such that Λ+
X = Λ+

Xi
.

This is the desired set.

(4) {v ∈ V : M(v) ≥ 0} =
N⋃
i=1

K(V +
Xi

), where {X1, . . . , XN} are chosen as in (3).

By (2) it follows that M(v) ≥ 0 for all v ∈ V +
Xi

, 1 ≤ i ≤ N . From the G-invariance of M we conclude

that M(v) ≥ 0 for all v ∈
N⋃
i=1

K(V +
Xi

). Conversely, let v be a nonzero vector in V such that M(v) ≥ 0. Let

X be a unit vector in p such that µ(X, v) = M(v) ≥ 0. Choose k ∈ K such that Y = Ad(k)X ∈ A. Then

µ(Y, kv) = µ(X, v) ≥ 0. By (2) and (3) it follows that kv ∈ V +
Y = V +

Xi
for some i. Hence, v ∈ K(V +

Xi
), which

completes the proof of (4).

We now complete the proof of the proposition. By hypothesis and (2), we obtain dimK < IG(V ) ≤

IG(X) = dimV −X = dimV − dimV +
X for all nonzero elements X of A. For 1 ≤ i ≤ N we define ϕi :

K ×V +
Xi
→ V by ϕi(k, v) = kv. Note that dim(K ×V +

Xi
) = dimK + dimV +

Xi
< dimV for every i, and hence

KV +
Xi

= ϕi(K × V +
Xi

) has measure zero in V . Hence {v ∈ V : M(v) ≥ 0} has measure zero in V by (4).

�

Proposition 3.32 (Additivity of the Index). Let {V1, . . . , VN} be G-modules, and consider the G-module

V = ⊕Vi. Then IG(V ) ≥
∑N

1 IG(Vi).

Proof. Let X ∈ A be a nonzero element. Using the notation and discussion of (2) above, it is easy

to see that V −X =
∑N
i=1(Vi)−X and IVG (X) =

∑
IVi

G (X) ≥
∑
IG(Vi). If X ∈ p is any nonzero element, then
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Y = Ad(k)X ∈ A for some k ∈ K. It follows that IVG (X) = IVG (Y ) since X and Y have the same eigenvalues

on V . Hence IG(V ) = min{IVG (X) : 0 6= X ∈ p} = min{IVG (X) : 0 6= X ∈ A} ≥
∑
IG(Vi). �

Corollary 3.33. Let V be a G-module that is the direct sum of p > dimK nontrivial submodules.

Then {v ∈ V : M(v) < 0} is an open set of full measure

Proof. The proof follows from the simple observation that the index of each summand Vi is at least 1.

Now applying the additivity of the index we are finished. �

Proposition 3.34 (Multiplicativity of the Index). Let V,W be G-modules. Then IG(V ⊗W ) ≥ IG(V ) ·

IG(W ).

Proof. If 0 6= X ∈ A, then X is negative definite on V −X ⊗ W−X . Hence IV⊗WG (X) ≥ (dimV −X ) ·

(dimW−X ) = IVG (X) · IWG (X) ≥ IG(V ) · IG(W ). If 0 6= X ∈ p and Y = Ad(k)(X) ∈ A for k ∈ K, then

IV⊗WG (X) = IV⊗WG (Y ) ≥ IG(V ) · IG(W ). �

4. Stable Points with Geometric Significance and the Nilalgebras Attached to SU(2)

Representations

In later chapters we will be concerned with a very particular class of representations and determining

when such representations have generically closed orbits. In that particular setting, stable points in the

representation space correspond to certain metric nilmanifolds with interesting geometric structures, see

Chapter 7.

Consider the action of SL(q,R) on so(q,R) where g(A) = gAgt, and the standard action of SL(p,R) on

Rp. Then SL(q,R)× SL(p,R) acts on so(q,R)p ' so(q,R)⊗ Rp, cf. Example 2.28. There is a Zariski open

set of Vpq = so(q,R)p that corresponds to two-step metric nilmanifolds. In this setting, moving along the

SL(q,R)×SL(p,R)-orbit amounts to varying the metric on the underlying nilalgebra. The minimal vectors

of this representation correspond to the so-called optimal metrics. See Chapter 7 for more details on the

relationship between real GIT and the geometry of two-step nilmanifolds.

Once at a minimal vector, one would like to determine how generic it is; e.g., is the orbit of this

point maximal dimensional. We can try to compute whether or not M is negative at the minimal vector.

To determine this, one just needs to compute pv and show that it equals 0, cf. Corollary 3.14. For the

representation above, the stabilizer corresponds to derivations that preserve V and Z, where Z is the center

of our two-step nilalgebra N and V is the metric complement of Z. In light of this, to show pv equals zero,

one needs to show that the metric nilalgebra, corresponding to the point v, admits no symmetric derivations

other than (r Id|V , 2r Id|Z).

Given a compact semi-simple group, one can construct a metric two-step nilmanifold which is optimal,

see [EH96]. The main result of this section is that all two-step nilmanifolds arising from irreducible rep-

resentations of su(2) have no non-trivial symmetric derivations, except the adjoint representation; that is,
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for the cases of interest the set of symmetric derivations is a 1 dimensional vector space. Let v ∈ V3,q, with

q = 2k + 1 or 4k, denote such an algebra. We show that pv = {0} and conclude that M(v) < 0. Corollary

3.13 together with Proposition 7.9 now imply that for each q = 2k + 1, 4k ≥ 4 there exists an open, dense

set of algebras in V3,q that admit optimal metrics. Moreover, we provide another construction to show that

the above result holds for all types (3,q), q 6= 3, 6. Note, the two types missed by our construction coincide

with the same two types (for p=3) in the exceptional list constructed by Eberlein [Ebe03]. However, this

does not necessarily keep us from getting a dense set of optimal metrics (which in fact happens).

Metric two-step nilalgebras. We begin by constructing two-step nilpotent Lie algebras attached to

representations of compact Lie groups. In [EH96] it is shown that these special nilpotent Lie algebras admit

a canonical metric called an optimal metric, cf. Chapter 7.

Let G be a compact Lie group and j : G → GL(V) be a representation of G. Let g denote the Lie

algebra of G. We have an induced representation of g on V; we denote both representations by j. The group

G acts on g via the adjoint action. Endow V with a G-invariant inner product <,> and endow g with an

Ad G-invariant inner product <<,>>; this is possible by the compactness of G. Note, the Ad G-invariant

inner product on g is unique up to scaling if g is simple. We construct a two-step metric nilpotent Lie algebra

N so that [N,N] = g is contained in the center of N and V is a complement of [N,N]. As a vector space

we endow N = V ⊕ g with the metric 〈·, ·〉 which corresponds to <,> on V and <<,>> on g. The bracket

relations on N are defined implicitly as follows.

g ⊂ center of N

〈[X,Y ], Z〉 = 〈j(Z)X,Y 〉 for X,Y ∈ V and Z ∈ g.

Observe that j(Z) is skew-symmetric as our inner product <,> on V is G-invariant; hence, the bracket

[·, ·] is skew-symmetric. By construction [N,N] ⊂ Z(N), the center of N, and the bracket satisfies the Jacobi

condition trivially; thus [·, ·] defines a Lie algebra structure on N. Moreover, this automatically makes the Lie

algebra N into a two-step nilpotent Lie algebra. There is a more general construction of two-step nilpotent

Lie algebras that includes this one, cf. Chapter 7.

We denote a metric algebra by a pair {N, 〈, 〉}, where 〈, 〉 is an inner product on N. Let V denote the

orthogonal complement of [N,N] in N. Consider the following linear map j : [N,N]→ so(V) defined by

(3.1) 〈[X,Y ], Z〉 = 〈j(Z)X,Y 〉 for X,Y ∈ V and Z ∈ [N,N].

In the case that our two-step nilalgebra is constructed from a representation of a compact semi-simple

group, this j map would be a Lie algebra homomorphism.
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Facts about compact semisimple Lie algebras. This information comes from [Ebe05] where com-

plete descriptions of real weight space decompositions have been given for real representations of real Lie

algebras. Our notation is consistent with Eberlein’s and we refer the reader to that paper for definitions;

this paper may be found on Eberlein’s website at www.math.unc.edu.

Definition 3.35. Let G be a compact Lie group. A nonzero element X of the Lie algebra g is regular

if dimZ(X) ≤ dimZ(Y ) for all nonzero Y ∈ g, where Z(X) denotes the centralizer of X in g.

If X ∈ g is regular, then Z(X) is a maximal abelian subalgebra of g.

Root Space Decomposition of Compact Semisimple Lie Algebras. We say that a finite dimen-

sional real Lie algebra g0 is compact and semisimple if the Killing form B0 of g0 is negative definite. It is

known that any connected Lie group G0 with Lie algebra g0 must be compact.

Let g0 be a compact, semisimple Lie algebra. Let g = gC
0 and let J0 : g → g denote the conjugation

determined by g0. If h0 is a maximal abelian subspace of g0, then h = hC
0 is a Cartan subalgebra of g,

and we have the root space decomposition g = h ⊕
∑
β∈Φ gβ , where each gβ is 1-dimensional over C and

Φ ⊂ Hom(h,C) is a finite set of roots determined by h. We obtain the real root space decomposition

g0 = h0 ⊕
∑
β∈Φ+ g0,β , where g0,β = (gβ ⊕ g−β) ∩ g0 is 2-dimensional over R. If Xβ spans gβ , then g0,β has

a natural basis {Aβ , Bβ}, where Aβ = Xβ + J0(Xβ) and Bβ = i(Xβ − Jo(Xβ)).

If Hβ ∈ h0 is chosen appropriately, then

[Hβ , Aβ ] = 2Bβ

[Hβ , Bβ ] = −2Aβ(3.2)

[Aβ , Bβ ] = −2B(Xβ , J0(Xβ))Hβ

where B denotes the Killing form of g.

Weight Space Decompositions. Let g0, g = gC
0 , h0, and h = hC

0 ⊆ g be as above.

If U is a finite dimensional g0-module, then V = UC is a finite dimensional g-module and we have the

weight space decomposition V = V0 ⊕
∑
λ∈Λ Vλ, where for H ∈ h, H ≡ 0 on V0 and H = λ(H)Id on Vλ.

Here Λ ⊆ Hom(h,C) is a finite set of weights determined by h. If U = g0 is the adjoint representation of g0,

then Λ = Φ and the weight space decomposition is the root space decomposition. In general −λ ∈ Λ if λ ∈ Λ

since (V, g) is the complexification of (U, g0). If Λ+ is a subset of Λ that contains exactly one of {λ,−λ} for

each λ ∈ Λ, then we obtain the real weight space decomposition U = U0 ⊕
∑
λ∈Λ+ Uλ, where U0 = V0 ∩ U

and Uλ = (Vλ ⊕ V−λ) ∩ U for λ ∈ Λ. (Note that Uλ = U−λ). Moreover, we obtain

Hβ : Uλ → Uλ

Aβ , Bβ : Uλ → Uλ+β ⊕ Uλ−β(3.3)

The following facts from Eberlein [Ebe05], Propositions 6.3 and 7.2, are useful.
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Fact 3.36. a) Uλ = {u ∈ U | H2
0u = −(iλ)2(H0)u,∀H0 ∈ h0}

b) dim Uλ = 2 if λ 6= 0

c) Aβ and Bβ are non-singular on Uλ, when λ(Hβ) 6= 0.

Moreover, Aβ(v) and Bβ(v) are linearly independent

for v ∈ Uλ.

Derivations of N. Recall the definition of a derivation of a Lie algebra. An endomorphism D ∈ End(N)

is said to be a derivation of the Lie algebra N if D[X,Y ] = [DX,Y ] + [X,DY ]. We let Symmder(N) denote

the vector space of symmetric derivations of N. Let D ∈ Symmder(N); then D preserves the commutator

[N,N] and hence it also preserves the orthogonal complement V. Thus for a symmetric derivation, we can

write D : N→ N as

D1 = D |V : V → V

D2 = D |[N,N]: [N,N]→ [N,N]

Facts about su(2). If g0 = su(2), a 3-dimensional real simple Lie algebra, then g = gC
0 = sl(2,C)

has only one positive root β ∈ Φ+ relative to a 1-dimensional Cartan subalgebra h = hC
0 , where h0 is any

1-dimensional subspace of g0. If G0 = SU(2), then the adjoint action of G0 on g0 is transitive on the

1-dimensional subspaces h0 of g0. Given h0 we obtain a basis {Hβ , Aβ , Bβ} of g0 = h0 ⊕ g0,β that satisfies

the bracket relations in Equation (3.2) above. We fix this basis for the remainder of this discussion.

If H0 is any nonzero element of su(2) then h = C− span{H0} is a Cartan subalgebra for sl(2,C). If U

is an su(2) module and V = UC, then by the representation theory of sl(2,C) the weight spaces Vλ, λ ∈ Λ,

are 1-dimensional and V0 = {0} or 1-dimensional depending on whether dimC V = dimR U is even or odd,

respectively.

All weights are of the form λ = kβ, k ∈ Z− {0}. See [Hum81, § 13.1, Table 1].

In the sequel we let V denote the representation space for g0, so that V0 = V0∩V and Vλ = (Vλ⊕V−λ)∩V,

where V = VC.

Fact 3.37. Every element of su(2) is regular.

Main Theorem.

Theorem. Let N = V ⊕ su(2) be constructed as above where V is any irreducible representation space

other than the adjoint representation space su(2). Then the symmetric derivations of N are 1 dimensional;

that is, if D = (D1, D2) ∈ Symmder(N) then (D1, D2) = (rId, 2rId) for some r ∈ R.

This theorem is stated as Theorem 3.43. At the end of the section we demonstrate the value of such a

theorem. In short, any other metric two-step nilalgebra ‘sufficiently close’ to N = V ⊕ su(2) will admit a

so-called optimal metric. Before proving this theorem we need some technical preliminaries.
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Rewriting the derivation condition for a symmetric derivation D on N = V ⊕ [N,N] we obtain

j(D2Z) = j(Z)D1 +D1j(Z) for all Z ∈ [N,N]

Next pick an orthogonal basis {Xi} of [N,N] such that D2 is diagonal. Suppressing the j map, we have

(3.4) D1Xi +XiD1 = aiXi

where D2 = diag{ai} relative to {Xi}.

Lemma 3.38. In the case that N is built from an irreducible su(2) representation, other than the adjoint

representation, we have a1 = a2 = a3.

As every element X ∈ su(2) is regular(cf. Fact above), we can take any h0 = R − span〈Xi〉 to be a

maximal abelian subalgebra whose complexification is a Cartan subalgebra of sl(2,C).

Sublemma 3.39. The following elements of su(2) are mutually orthogonal Hβ ⊥ Aβ ⊥ Bβ.

As the Ad SU(2)-invariant inner product on su(2) is unique up to scaling, we may assume that we are

working with (a multiple of) −B0, where B0 denotes the (negative definite) Killing form on su(2); that is,

< Z1, Z2 >= −tr(ad Z1 ◦ ad Z2).

From Equation (3.2) we compute |Hβ |2 = 8 and |Aβ |2 = |Bβ |2 = −8B(Xβ , J0(Xβ)) where B denotes

the Killing form of g = sl(2,C).

Proof. We will only show that Hβ ⊥ Aβ as Hβ ⊥ Bβ is similar. Consider the inner product

< Hβ , Aβ >=−B0(Hβ , Aβ) = −trace(ad Hβ ◦ ad Aβ). By Equation (3.2) the matrix of ad Hβ ◦ ad Aβ rela-

tive to {Hβ , Aβ , Bβ} has all diagonal entries zero; hence the matrix is traceless.

Next we showAβ ⊥ Bβ . Consider the inner product< Aβ , Bβ >= −B0(Aβ , Bβ) = −trace(ad Aβ ◦ ad Bβ).

As above, using Equation (3.2), the matrix of ad Aβ ◦ad Bβ relative to {Hβ , Aβ , Bβ} has all diagonal entries

zero; hence the matrix is traceless. �

Focusing on h0 = R − span〈X1〉 we see that X1 ⊥ X2, X3 as these are eigenvectors of the symmetric

derivation D, cf. Equation (3.4). This in turn tells us that X2, X3 ∈ R− span〈Aβ , Bβ〉.

Sublemma 3.40. In Lemma 3.38 we may assume that X2 = Aβ and X3 = Bβ (up to scaling).

Proof. Consider the action of SU(2) on N. Here we have k.(v, Z) = (kv, kZk−1); that is, SU(2) is

acting on V in the usual way (according to the irreducible representation at hand) and on Z = su(2) by the

Adjoint action. Since the j-map here is a representation, this action of SU(2) is by automorphisms of N;

moreover, this action is by isometries of 〈·, ·〉. Thus we have an induced action of SU(2) on Der(N) given

by (k ·D) = kDk−1 where k ∈ SU(2), D ∈ Der(N), and v ∈ N.

Recall that Symmder(N) denotes the symmetric derivations of {N, 〈·, ·〉}. Since SU(2) acts by isometries,

k ·D = kDk−1 is symmetric if D ∈ Symmder(N).
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Observe that k ·D has the same eigenvalues as D. Thus, to prove the Lemma, we just need show that

there exists k ∈ SU(2) such that

k.X1 = X1

k.X2 = Aβ

k.X3 = Bβ

We use k = exp(tX1) for some t. Notice that X2, X3 are orthogonal, contained in span〈Aβ , Bβ〉 and

k = exp(tX1) is just rotation in this plane. Multiply X2, X3 by suitable constants so that |X2| = |X3| =

|Aβ | = |Bβ |. Thus we can find such a t so that the equations above hold. Since the derivation k.D has the

same eigenvalues as D, the eigenvectors contained in [N,N] have the same eigenvalue for k ·D if and only if

they do so for D. This proves the Lemma. �

Sublemma 3.41. The following is a list of useful properties:

a) D1 preserves Vλ for all λ ∈ Λ

b) Let µi be an eigenvalue of D1 with eigenvector vi ∈ Vλi , λi 6= 0.

i) Then X1vi is also an eigenvector of D1 in Vλi
with eigenvalue a1 − µi

ii) If j = 2, 3 and Xjvi 6= 0, then Xjvi is an eigenvector of D1 in Vλi−β ⊕ Vλi+β

with eigenvalue aj − µi

Proof. (a) It follows immediately from Equation (3.4) that X2
iD1 = D1X

2
i for i = 1, 2, 3. The charac-

terization of Vλ for h0 = R− span{X1} from Fact 3.36(a) now implies part (a) of Proposition 3.41.

Remark. Assertion (a) holds for any maximal abelian subspace h0 = R− span{X} such that X ∈ su(2)

is an eigenvector of D2. We record this observation now as it will be useful later.

We will prove parts (b)(i) and (b)(ii) at the same time. However, even though these have the same

proof, it is worth while for us to list them separately in the Proposition. Applying both sides of Equation

(3.4) to vi, we have D1Xjvi = (aj − µi)Xjvi. �

Proof of Lemma 3.38. From now on λ will denote the highest weight of our representation of sl(2,C)

on V = VC. Also, recall that we are considering all irreducible representations except the adjoint representa-

tion; that is, λ−β 6= 0. Since λ is the highest weight, Vλ+β = {0} and hence Vλ+β = (Vλ+β ⊕ V−(λ+β)) ∩ V ={0}.

This implies X2, X3 : Vλ → Vλ−β by Sublemma 3.40 and Equation (3.3).
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Let v ∈ Vλ be an eigenvector of D1 with eigenvalue µ. By Fact 3.36(c) and Sublemma 3.41 (b)(ii) we

see that the following are also eigenvalues of D1 whose nonzero eigenvectors live in Vλ−β :

a2 − µ ↔ X2v

a3 − µ ↔ X3v

a1 − (a2 − µ) ↔ X1X2v

a1 − (a3 − µ) ↔ X1X3v

Using the fact that the dimension of Vλ−β is 2 since λ−β 6= 0 (cf. Fact 3.36(b)), we will show that only

two possibilities happen.

Lemma 3.42. Either a2 = a3 or a1 = 1
2 (a2 + a3).

Proof. In the above list of eigenvalues, there can only be 2 distinct numbers in the list of 4 given, as

the dimension of Vλ−β is 2. Suppose a2 6= a3. Manipulating the small number of choices in pairing these

numbers reveals

(3.5) 2µ = a2 + a3 − a1

As the ai are fixed and µ is any eigenvalue of D1 on Vλ, we see that

(3.6) D1 ≡ µId on Vλ

Since µ and a1 − µ are eigenvalues for D1 on Vλ by Sublemma 3.41 (b)(i) we have a1 − µ = µ, or a1 = 2µ.

This and the equation above now imply the lemma. Namely, a1 = 1
2 (a2 + a3). �

To complete the proof of Lemma 3.38 we recall that any of the Xi can generate a real Cartan subalgebra

h0 = R− span{Xi}. Using this observation and the lemma above, we have the following list of possibilities:

either a2 = a3 or a1 = 1
2 (a2 + a3)

and either a1 = a2 or a3 = 1
2 (a1 + a2)

Any four of the above combinations tells us that a1 = a2 = a3, as desired. �

This proves Lemma 3.38 and we have achieved half of our goal, i.e. D2 = aId.

Symmetric Derivations of nilmanifolds arising from representations of compact semi-simple

groups.

Theorem 3.43. Let N = V ⊕ su(2) be constructed as above where V is any irreducible representation

other than the adjoint representation. Then the symmetric derivations of N are 1 dimensional. That is, if

D = (D1, D2) ∈ Symmder(N) then (D1, D2) = (rId, 2rId) for some r ∈ R.
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Theorem 3.44. Let N = V ⊕ so(n) be the two-step nilmanifold constructed from usual representation

of SO(n) acting on V = Rn. Then Symmder(N) ' Symm(n), the symmetric n× n matrices.

Remark. The correspondence ' in the statement of Theorem 3.44 is explained in the proof. Theorem

3.44 is why Theorem 3.43 fails in the case that we have the adjoint representation for su(2); that is, the case

when q = 3.

Proof of theorem 3.43. Lemma 3.38 reduces to the case that D2 is a multiple of the identity. More-

over, in this case every X ∈ su(2) is an eigenvector of D2 and hence D1 preserves the weight space decom-

position with respect to any maximal abelian subspace h0 = R − span{X} ⊂ g0 = su(2) (cf. the remark

following Sublemma 3.41). If Vλ is the highest weight space with respect to h0, then k · Vλ is the highest

weight space with respect to k · h0 for every k ∈ SU(2).

Fix our choice of h0 for the moment. By Lemma 3.38 and Equation (3.6) we may let D2 = 2r Id and

let D1 = µId on Vλ, where λ is the highest weight space with respect to the maximal abelian subalgebra h0.

Then Equations (3.5) and (3.6) imply µ = r since a1 = a2 = a3 = 2r. Observe that since r is independent

of our choice of h0 we see that

(3.7) D1 = rId on k · Vλ for all k ∈ SU(2)

This follows as k · Vλ is the highest weight space corresponding to the maximal abelian subalgebra Ad(k)h0.

Fix h0 and hence a highest weight space Vλ. Pick some nonzero v ∈ Vλ. As the representation V is an

irreducible SU(2)-module, the set {k · v|k ∈ SU(2)} spans the vector space V. Thus D1 = rId by Equation

(3.7) and we have shown

(D1, D2) = (rId, 2rId)

�

Remark. The proof for g0 = su(2) used the facts that every element X of g0 is regular and every nonzero

weight space is 2-dimensional for every irreducible g0-module. There are no analogues of these facts for an

arbitrary compact semisimple Lie algebra g0, and the extension of Theorem 3.43 to g0 6= su(2) becomes quite

a challenge.

Proof of Theorem 3.44. First we explain the correspondence. Let X ∈ Symm(n), the symmetric

n × n matrices. We associate to X an endomorphism of N and show this to be a derivation. Define

D = (D1, D2) by D1(v) = Xv for v ∈ V = Rn and D2(Z) = X · Z = XZ + ZX for Z ∈ Z = so(n). We

endow N with the inner product that makes the standard basis of V = Rn orthonormal and is the negative

trace form on Z = so(n). Observe that D is symmetric with respect to this inner product on N.

Recall from the discussion preceding Equation (3.4) that D is a symmetric derivation if it satisfies

j(D2Z) = D1j(Z) + j(Z)D1; here the representation j is the inclusion map j : so(n) ↪→ gl(n). By definition

j(D2Z) = j(X · Z) = j(XZ + ZX) = XZ + ZX = Xj(Z) + j(Z)X = D1j(Z) + j(Z)D1 and hence D
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is a symmetric derivation. To see that every symmetric derivation is of this form, let D = (D1, D2) be a

symmetric derivation; here D1 ∈ Symm(V) = Symm(n) and D2 ∈ Symm(Z). As D satisfies j(D2Z) =

D1j(Z) + j(Z)D1 and the inclusion map j has no kernel, we see that D2(Z) = D1Z + ZD1 = D1 · Z as

claimed. �

The relationship between metric two-step nilpotent Lie algebras and points in the representation space

SL(p,R) × SL(q,R) � so(q,R)p is explained in Chapter 7. We state the following theorem here for the

reader familiar with that relationship.

Theorem 3.45. Consider the action of SL(p,R) × SL(q,R) on so(q,R)p. Given C = (C1, . . . , Cp) ∈

so(q,R)p with {Ci} linearly independent, we can associate to C a metric two-step nilpotent Lie algebra

with structure matrices C. This metric two-step nilalgebra is denoted by Rp+q(C) (cf. Chapter 7). The set

pC = {X ∈ p|X ·C = 0} corresponds to the traceless symmetric derivations of Rp+q(C) (cf. Proposition 7.6).

Thus, in the event that Rp+q(C) is optimal and there are no traceless symmetric derivations of Rp+q(C), we

have that M(C) < 0 (cf. Corollary 3.14). Hence there exists a dense open set of algebras admitting optimal

metrics (cf. Corollary 3.13 and Proposition 7.9).

Remark. This statement can be improved upon using Popov’s results, cf. Theorem 3.4, and the works

of Knop-Littelman, cf. [KL87].

Additionally, one can extend the arguments of Theorem 3.43 to a wider class of representations of su(2)

which are reducible. For example the results of Theorem 3.43 hold for a representation V λ1 ⊕ V λ2 when

|λ1 − λ2| ≥ 2β. In this way we can show that for all types (3, q), with q 6= 3, 6, 8, there exists a dense open

set of points in so(q,R)3 whose corresponding metric nilalgebras admit optimal metrics. We leave the proof

of this extension of Theorem 3.43 to the reader.
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CHAPTER 4

Good Representations and Homogeneous Spaces

This chapter is written to stand alone. However, it contains useful examples that are referenced else

where in the thesis.

Recall that if F is a complex reductive affine algebraic group acting on a complex affine variety X, there

exists a “good quotient” X//F from Geometric Invariant Theory (GIT). Here X//F is an affine variety

together with a quotient morphism π : X → X//F which is a regular map between varieties. The variety

X//F has as its ring of regular functions C[X//F ] = C[X]F , the F -invariant polynomials on X. Moreover,

the quotient map is the morphism corresponding to the injection C[X]F ↪→ C[X]. See [New78] for a detailed

introduction to Geometric Invariant Theory and quotients.

Good quotients are categorical quotients (see [New78, Chapter 3]). As a consequence they possess the

following universal property which will be needed later. Let φ : X → Z be a morphism which is constant on

F -orbits. Then there exists a unique morphism ϕ : X//F → Z such that ϕ ◦ π = φ.

Let G be a complex reductive affine algebraic group. Let F,H be algebraic reductive subgroups. The

homogeneous space G/F has a natural, transitive left action of G on it. We will consider the induced action

of H on G/F .

The group F acts on G via f · g = gf−1. This gives a left action of F on G such that every orbit is

closed. In this way the GIT quotient G//F is a parameter space; that is, every G-orbit is closed. If one

considers the analytic topologies on G and G//F one readily sees that G//F and G/F (with the usual

Hausdorff quotient topology) are homeomorphic. In this way we endow G/F with a Zariski topology. Here

and in later discussion we identify the coset space G/F with the variety G//F . Moreover, it will be shown

that the natural G-action on G/F is algebraic.

Hereafter a property of a space will be called generic if it occurs on a nonempty Zariski open set. Our

main result is the following.

The following theorem and its corollaries are true for both real and complex algebraic groups.

Theorem 4.1. Consider the induced action of H on G/F , then generic H-orbits are closed in G/F ;

that is, there is a nonempty Zariski open set of G/F such that the H-orbit of any point in this open set is

closed.
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Corollary 4.2. Let G,H,F be as above. If H is normal in G, then all orbits of H are closed in G/F .

Consequently, if G acts on V and the orbit Gv is closed, then Hv is also closed.

Corollary 4.3. Let G be a reductive algebraic group. If H,F are generic reductive subgroups, then

H ∩ F is also reductive. More precisely, take any two reductive subgroups H, F of G. Then H ∩ gFg−1 is

reductive for generic g ∈ G.

Remark. The word generic cannot be replaced by all. We show this in Example 4.7. Theorem 4.1 is

proven first for complex groups then deduced for real groups. It is not known at this time, to the author,

whether or not these results hold true for more general algebraic groups. Our proof exploits Weyl’s Unitarian

Trick.

Before proving this theorem, we present some corollaries to demonstrate its value. Proofs of these results

have been placed at the end.

Corollary 4.4. Let G be a reductive group acting linearly on V . Let H be a reductive subgroup of G.

If G has generically closed orbits then H does also. Moreover, each closed G-orbit is stratified by H-orbits

which are generically closed.

We say that a representation V of G is good if generic G-orbits in V are closed.

Corollary 4.5. Let G be a reductive group, and let V and W be good G-representations, that is, generic

G-orbits are closed. Then V ⊕W is also a good G-representation.

This corollary is of particular interest as it allows us to build good representations from smaller ones.

The idea of building good representations from subrepresentations was also carried out in [EJ, Section 3].

In that setting, the representations of interest are those that have points whose real Mumford numerical

function is negative. The results of the current paper generalize some of those results.

Example 4.6 (non-closed orbits of smaller groups). Consider the 3− dim irreducible representation V3

of SL2R acting on the homogeneous degree 2 forms of 2 variables.

Here g ∈ SL2 acts on f ∈ V3 by (g · f)(x, y) = f(g−1(x, y)). Letting {xy, x2, y2} be an orthonormal

basis, one can easily show that v = xy is a minimal vector. Thus SL2 · v is closed in V3. So for any

g ∈ SL2, gv also has a closed SL2 orbit and thus (v, gv) has a closed SL2 × SL2 orbit in V3 ⊕ V3. Consider

g =

 1 −1

0 1

 and the point w = (v, gv) = (xy, xy + y2) ∈ V3 × V3. Let H = SL2 with the diagonal

embedding in SL2 × SL2. We claim that H · w is not closed. To see this, observe that by means of the

diagonal group diag{λ, λ−1} ⊂ H the point (v, v) ∈ Hw. Hence Hw is not closed.

Example 4.7 (non-reductive intersection and non-closed orbit). There exist semi-simple G and reductive

subgroups H,F such that H ∩ F is not reductive. Additionally, we demonstrate a representation V of G so

that G · x is closed but H · x is not closed, for some x ∈ V .
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Recall the following well-known fact. Let G be an reductive affine algebraic group acting on an affine

variety. If the orbit G ·x is closed then Gx is reductive, see [BHC62, Theorem 3.5] or [RS90, Theorem 4.3].

We will choose F = Gx for a particular x ∈ V . Then H ∩ F = H ∩Gx = Hx. Once it is shown that Hx is

not reductive, the orbit H · x cannot be closed by the fact stated above.

Consider G = SL6(C) acting on V =
∧2 C6 ' so(6,C). This is the usual action and is described as

follows. For M ∈ so(6,C) and g ∈ SL6(C), the action is defined as g ·M = gMgt. The subgroup H = SL2(C)

is imbedded as the upper left 2× 2 block.

Let v ∈ V be the block diagonal matrix consisting of the blocks J =

 0 1

−1 0

 along the diagonal. That

is, v =


J

J

J

. Given the standard inner product (from the trace form) on V , the vector v is a so-called

minimal vector as v2 = −Id, thus G · v is closed. See [EJ, Example 1] for details and more information on

minimal vectors; see also [RS90]. Consider x = g · v where

g =



1 0 1

1 0

1

Id3×3



SinceGv is reductive, Gx = gGvG
−1 is also reductive. One can computeHx to show thatHx ' Ca =

1 a

0 1

.

This group is clearly not reductive and we have the desired example.

1. Technical Lemmas

We recall the definition of varieties and morphisms which are defined over R. This is the setting that we

will primarily work in. See [Bor91, §§11−14] or [Mar91, Chapter 1, 0.10] for more information on varieties

and k-structures on varieties.

Definition 4.8 (Real points of affine subvarieties). An affine subvariety M of Cn is the zero set of

a collection of polynomials on Cn. The variety M is said to be defined over R if M is the zero set of

polynomials whose coefficients are real. Thus C[M ] = R[M ] ⊗R C. The real points of M are defined as the

set M(R) = M ∩ Rn; we call such a set a real variety.

Definition 4.9 (R-structures). Given an abstract affine variety X, one defines a R-structure on X by

means of an isomorphism α : X → M . A morphism f : X → Y of R-varieties is said to be defined over R
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if the comorphism f∗ : C[Y ]→ C[X] satisfies f∗(R[Y ]) ⊂ R[X]. Additionally, we define the real points of X

to be X(R) = α−1(M(R)).

Remark. Let M ⊂ Cm and N ⊂ Cn be subvarieties defined over R. Then f : M → N being defined over

R implies f(M(R)) ⊂ N(R). To obtain the converse one needs M to have an additional property that we

call the (RC) property, see Definition 4.10. We state the converse after defining this property.

We observe that a variety can be endowed with many different real structures.

Definition 4.10. [RC - property] Let X be a complex variety defined over R. We say that X has the

(RC) property (real-complexified) if the real points X(R) are Zariski dense in X.

This scenario arises precisely if one begins with a real variety Z ⊂ Rn and considers the Zariski closure

Z̄ ⊂ Cn. Here Z̄ has the (RC) property; see [Whi57] for an introduction to real varieties and their

complexifications.

Proposition 4.11. Let M ⊂ Cm and N ⊂ Cn be subvarieties defined over R. Assume that M has the

(RC) property. Then f : M → N being defined over R is equivalent to f(M(R)) ⊂ N(R).

This result is useful but not needed in our proofs; we postpone the proof of this proposition till the end.

One immediately sees that the same holds more generally for abstract affine varieties with R-structures.

That is, let X,Y be complex affine varieties defined over R and f : X → Y a morphism. Assume that X

has the (RC) property. Then f is defined over R if and only if f(X(R)) ⊂ Y (R). Often we will simply say

that f : X → Y is defined over R, or f is an R-morphism, when both varieties and the morphism are defined

over R.

Lemma 4.12. Let X be an (abstract) complex affine variety and G a complex algebraic reductive group

acting on X, with all defined over R. Then G(R) acts on X(R) and for x ∈ X(R) the orbit G(R) · x is

Hausdorff closed in X(R) if and only if G · x is Zariski closed in X.

Remark. It is well-known that G · x is Hausdorff closed if and only if it is Zariski closed, see [Bor91].

Notice that the above situation arises when we have a real algebraic group acting on a real algebraic variety.

This lemma has been proven for linear G actions, see [BHC62, Proposition 2.3] and [RS90]; we reduce to

this case.

Proof. Let G and X be as above. It is well-known that there exists a complex vector space V (defined

over R), a closed R-imbedding i : X ↪→ V , and a representation T : G → GL(V ) defined over R such that

i(gx) = T (g)i(x) for all g ∈ G, x ∈ X. See [Bor91, I.1.12] for the construction of such an imbedding.

As all of our objects are defined over R we see that G(R) acts on X(R), i(X(R)) ⊂ V (R), and T :

G(R)→ GL(V (R) is a real linear representation of G(R), cf. the remark before Definition 4.10.
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Now take x ∈ X(R). We have the following set of equivalences

G(R)x is closed in X(R)

i(G(R)x) is closed in V (R), as i is a closed R-imbedding

T (G(R))i(x) is closed in V (R)

T (G)i(x) is closed in V by [BHC62, RS90]

i(Gx) is closed in V

Gx is closed in X

�

Richardson and Slodowy [RS90] have shown the following

Proposition 4.13. Let G be a reductive algebraic group acting on X so that G, X, and the action

are defined over R and consider the quotient morphism π : X → X//G. Then π is defined over R and

π(X(R)) ⊂ (X//G)(R) is Hausdorff closed.

In general one cannot expect π(X(R)) to be all the real points (X//G)(R). However, we make the

following simple observation.

Lemma 4.14. If X has the (RC) property, then so does X//G. In fact π(X(R)) is Zariski dense in

X//G.

The first statement is proven in [RS90] and the second statement is a special case of a more general

statement: Let f : X → Y be a regular map and Z a Zariski dense set of X, then f(Z) is Zariski dense in

f(X).

Proposition 4.15. Let G be a reductive algebraic group defined over R and H,F algebraic reductive

subgroups defined over R. Then the action of H on G/F is defined over R.

Before presenting the proof of this proposition we state the following useful lemma.

Lemma 4.16. Let H ×F act on a variety X, where H, F , X, and the actions are defined over R. Then

there is a unique H action on X//F defined over R which makes Diagram A (below) commute.

Proof of lemma. Since H ×F acts on X we can consider the F action on H ×X. We claim that the

map π1 = id × π2 : H ×X → H × (X//F ) is a good quotient; where π2 : X → X//F is a good quotient.

Here X//F is the variety whose ring of regular functions is C[X]F , the F -invariant polynomials of C[X].

For a detailed introduction to quotients, see [New78, Chapter 3].

To show that H × (X//F ) is the desired quotient, we will show that C[H × (X//F )] = C[H ×X]F and

that the comorphism (id × π2)∗ is the inclusion map. Recall that π∗2 : C[X//F ] = C[X]F ↪→ C[X] is the

inclusion map.
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There is a natural identification between C[H×X] and C[H]⊗C[X] defined by
∑
pi(h)qi(x) 7→ (

∑
pi⊗

qi)(h, x). Under this identification, C[H × X]F ' C[H] ⊗ C[X]F where C[H × X]F ,C[X]F denote the F -

invariant polynomials in C[H×X],C[X], respectively. The map id×π2 : H×X → H× (X//F ) corresponds

to a comorphism (id × π2)∗ : C[H × (X//F )] → C[H × X] and under the natural identification described

above, the map (id× π2)∗ corresponds to id∗ ⊗ π∗2 : C[H]⊗C[X//F ]→ C[H]⊗C[X]. This map id∗ ⊗ π∗2 is

the inclusion map and is an isomorphism onto C[H] ⊗ π∗2(C[X//F ]) = C[H] ⊗ C[X]F . Thus, (id × π2)∗ is

the inclusion map and maps C[H × (X//F )] isomorphically onto C[H ×X]F . We have shown the following.

H × (X//F ) ' (H ×X)//F

Consider the following diagram. Let m1 denote the morphism corresponding to H-action on X. Since

π2 ◦m1 is constant on F -orbits, by the discussion in the introduction there exists a unique map m2 which

factors and makes the diagram commute.

(A)

H ×X m1−−−−→ X

π1

y yπ2

H × (X//F ) m2−−−−→ X//F

where π1 = id× π2 is the quotient of the F action on H ×X, f · (h, x) = (h, f · x). Equivalently, for h ∈ H

and a closed orbit F · x ⊂ X, h(Fx) = F (hx) is a closed F -orbit.

We know that m1, π1, π2 are defined over R and that m2 ◦ π1 = π2 ◦m1 is defined over R. From this we

wish to show m2 is also defined over R. Since π∗2(R[X//F ] = R[X]F we have

π∗1 ◦m∗2 = m∗1 ◦ π∗2 : R[X//F ]→ R[H ×X]F

Since π∗1 : C[H × (X//F )]→ C[H ×X]F and π∗1 : R[H × (X//F )]→ R[H ×X]F are isomorphisms, we

have

m∗2(R[X//F ]) ⊂ π∗ −1
1 (R[H ×X]F ) = R[H ×X//F ]

Thus, m2 : H × (X//F ) → X//F is defined over R, or equivalently, the H action on X//F defined by

m2 is defined over R. The uniqueness of the H-action on X//F is equivalent to the uniqueness of the map

m2 in Diagram A. �

Proof of the proposition. Once it is shown that the G-action on G/F is defined over R, it will be

clear that the H-action is also defined over R. We apply Lemma 4.16 in the setting that G is a reductive

group, H = G, X = G, and F is a reductive subgroup of G.

Since G is an algebraic group defined over R, the action G × F on G defined by (h, f) · g = hgf−1 is

defined over R, where h, g ∈ G, f ∈ F . Recall that G/F is the GIT quotient G//F under the F action

listed above (notice all the orbits are closed, hence the usual topological quotient coincides with the algebraic

quotient). The unique H-action described in Lemma 4.16 is precisely the standard action of G on G/F .

Thus we have shown that the usual action of G on G/F is algebraic and defined over R. �
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2. Transitioning between the Real and Complex Settings: Proof of Theorem 4.1

First we remark on how one obtains Theorem 4.1 for real algebraic groups once it is known for complex

groups. Let G,H,F be the same as in Theorem 4.1 but with real groups instead of complex groups. Let GC

denote the Zariski closure of G in GL(n,C). It follows that G is the set of real points of GC, and we call

GC the algebraic complexification of G. Likewise, H,F are the real points of their complexifications HC, FC.

Here all of our objects have the (RC)-property.

Consider the G-equivariant imbedding i : G/F → GC/FC, defined by i : gF 7→ gFC, and the quotient

π : GC → GC/FC. Note that i is injective since G ∩ FC = F . We view G/F as a subset of GC/FC via i and

we note that i(G/F ) = π(G).

As G/F ' π(G) and G = GC(R), we see that G/F ⊂ (GC/FC)(R) and is Zariski dense in GC/FC (see

Proposition 4.13 and Lemma 4.14). Moreover, assuming the theorem is true in the complex setting, there

exists a Zariski open set O ⊂ GC/FC such every point in O has a closed HC orbit. G/F being Zariski dense

intersects O and so, by Lemma 4.12, we see that all points of G/F ∩ O have closed H-orbits in G/F . This

proves Theorem 4.1 in the real case.

To prove the theorem for complex groups, we take advantage of certain real group actions. Let G be

a complex reductive group and U a maximal compact subgroup. We can realize U as the fixed points of a

Cartan involution θ. Moreover, there exists a real structure on G so that U is the set of real points of G (see

[BHC62, Remark 3.4]). Observe that G has the (RC) property as G is the complexification of its compact

real form U .

Lemma 4.17. We may assume that H,F from our main theorem are θ-stable.

Proof. It is well-known that there exist conjugations g1Hg
−1
1 and g2Fg

−1
2 so that these conjugates are

θ-stable, see [BHC62] or [Mos55]. So to prove the lemma, we just need to show that the theorem holds

for H,F if and only if it holds for conjugates of these groups.

Observe thatG/F andG/(g2Fg
−1
2 ) are isomorphic as varieties via conjugation by g2 : gF 7→ (g2gg

−1
2 )(g2Fg

−1
2 ).

We denote this map by C(g2). Also observe that G acts via left translation on G/F by variety isomor-

phisms. Thus the left translate of a closed set in G/F is again a closed set G/F . For k ∈ G we have

(g1Hg
−1
1 )k(g2Fg

−1
2 ) is closed in G/(g2Fg

−1
2 ) if and only if C(g2)−1 · ((g1Hg

−1
1 )k(g2Fg

−1
2 )) is closed in G/F .

But C(g2)−1 · ((g1Hg
−1
1 )k(g2Fg

−1
2 )) = g−1

2 g1Hg
−1
1 kg2F and this is closed if and only if Hg−1

1 kg2F is closed

in G/F .

Thus the g1Hg
−1
1 -orbit of k(g2Fg

−1
2 ) is closed in G/(g2Fg

−1
2 ) if and only if the H-orbit of g−1

1 kg2F is

closed in G/F .

�
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Lemma 4.18 (Weyl’s Unitarian Trick). Let G be a complex reductive group and U a maximal compact

subgroup. Then U is Zariski dense in G.

Proof. This statement and its proof are well-known; we include the proof for completeness.

As U is a maximal compact subgroup, U intersects each topological component of G, see [Mos55,

Section 3]. Denote by G0 and U0 the Hausdorff identity components of G and U , respectively. Writing

G =
⋃n
i=1 uiG0, where ui ∈ U for all i, we have U =

⋃n
i=1 uiU

′, where U ′ = U ∩ G0. To show that U is

Zariski dense in G it suffices to show that U0 is Zariski dense in G0 since U0 ⊂ U ′.

Denote by U0 the Zariski closure of U0. This is a complex algebraic group as U0 is a group, cf. [Bor91].

Since G0 is an algebraic group we have U0 ⊂ G0 and we have the following inclusions of Lie algebras

LU0 ⊂ LU0 ⊂ LG0. Lastly, since LU0 is a compact form for LG0 we see that LU0⊗R C ⊂ LG0 = LU0⊗R C.

Hence the connected subgroup U0 of G0 has the same Lie algebra as G0 and they are equal as G0 is also

connected.

�

We continue the proof of Theorem 4.1. Now that H,F are θ-stable, and U = Fix(θ), we know that their

maximal compact subgroups UH = U ∩H,UF = U ∩ F are contained in U . Moreover, since U = G(R), the

compact subgroups UH , UF are the real points of the algebraic groups H,F . Observe that H,F have the

(RC) property as their maximal compact subgroups are the real points. For a proof of the following useful

fact in the complex setting see [New78]. For an extension to the real setting see Section 2.1.

Proposition 4.19. Let G be a real or complex linear reductive algebraic group acting on an affine variety

X. If there exists a closed orbit of maximal dimension, then there is a Zariski open set of such orbits.

Proof of Theorem 4.1. We apply the above proposition to the action of H on the affine variety G/F .

Note that G/F is affine as G is reductive and F is reductive (see [BHC62, Theorem 3.5]).

As the F -action on G is defined over R, the quotient G/F is defined over R. Since our objects have

property (RC) the image of the real points of G is dense in G/F by Lemma 4.14; that is, U/UF ⊂ G/F is

dense. Here, as before, we are identifying U/UF with the image of U under the quotient G→ G/F .

Moreover, Proposition 4.15 shows that the H-action on G/F is defined over R. If we let O denote the

set of maximal dimension H-orbits in G/F , then O ∩ (U/UF ) is non-empty. However, UH is the set of real

points for H and every UH orbit in U/UF is closed (since they are all compact). Therefore, every point in

O∩ (U/UF ) has a closed H-orbit by Lemma 4.12 and we have found a closed H-orbit of maximal dimension.

Applying Proposition 4.19 we see that generic H-orbits are closed. �

3. Proofs of the Corollaries

We note that the proofs of all results below, except for Proposition 4.11, are valid in the real and complex

cases simultaneously.
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Proof Corollary 4.2. The theorem above provides some point kF ∈ G/F which has a closed H-

orbit. Take g ∈ G and consider the point gkF ∈ G/F . The H-orbit of this point is (H · gk)F =

(g g−1Hgk)F = (g Hk)F which is closed as the G action on G/F is by variety isomorphisms. Hence

every H-orbit in G/F is closed as G acts transitively on G/F .

We prove the second statement of the corollary using Corollary 4.4 (which is proven below). In the proof

of this corollary it is shown that if G · v is closed in V , then there exists g ∈ G such that Hgv is closed in V .

But now Hgv = gHv by the normality of H. Moreover, gHv is closed in V if and only if Hv is closed in V

as G acts by isomorphisms of the vector space. This proves the second part of the proposition. �

Proof of Corollary 4.4. We prove the second statement first. Take v ∈ V such that G · v is closed.

It is well-known that Gv is reductive, see, e.g., [RS90, Theorem 4.3] or [BHC62, Theorem 3.5]. The orbit

G · v is G-equivariantly isomorphic to the affine variety G/Gv. Thus the H-orbit H · gv ⊂ G · v ⊂ V

corresponds to H · gGv ⊂ G/Gv and for generic g these H-orbits are closed by Theorem 4.1. This proves

the second statement.

For the first statement, let O = { v ∈ V |dim H · v is maximal} and let U = { v ∈ V | G · v is closed }.

The set O is a nonempty Zariski open set and by hypothesis U contains a nonempty Zariski open set. Pick

w ∈ O ∩ U . For generic g ∈ G, the orbit H · gw is closed by the argument of the previous paragraph.

Moreover, gw ∈ O ∩ U for generic g ∈ G. Thus there exists some point gw which has a closed H-orbit of

maximal dimension. Therefore by Proposition 4.19 generic H-orbits in V are closed. �

Proof of Corollary 4.5. Take v ∈ V and w ∈W which both have closed G-orbits. Then the G×G

orbit of (v, w) is closed in V ⊕W . Now consider the diagonal imbedding of G in G×G. In this way, G acts

on V ⊕W and since generic G×G-orbits in V ⊕W are closed, we see that generic G-orbits in V ⊕W are

also closed by Corollary 4.4. �

Proof of Corollary 4.3. Let G be a reductive group and let H, F be reductive subgroups. There

exists a representation V of G such that the reductive subgroup F can be realized as the stabilizer of a point

v ∈ V and such that the orbit G · v is closed, see [BHC62, Proposition 2.4].

By Corollary 4.4, we know that H · gv is closed for generic g ∈ G. Thus Hgv is reductive for generic

g ∈ G. But Hgv = H ∩Ggv = H ∩ gGvg−1 = H ∩ gFg−1 and we have the desired result. �

Proof of Proposition 4.11. First we remark on the direction that does not require M to have the

(RC) property; that is, if f : M → N is defined over R then f(M(R)) ⊂ N(R). To see this direction write

f = (f1, . . . , fn), where fi : Cm → C. These component functions are precisely fi = f∗(πi) where πi is

projection from Cn to the i-th coordinate. Since this projection is defined over R we see that the fi take

real values when evaluated at real points. That is, f(M ∩ Rm) ⊂ N ∩ Rn.

Now assume M has the (RC) property and let f : M → N be a morphism of varieties such that

f(M(R)) ⊂ N(R). We will show f∗(R[N ]) ⊂ R[M ]; that is, f is defined over R.
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We can describe the polynomial f by its coordinate functions, f = (f1, . . . , fn) where fi : Cm → C and

fi|M∩Rm → R. Let f i denote the polynomial whose coefficients are the complex conjugates of those of fi,

then we have 1
2 (fi+ f i) = fi on the set M ∩Rm. M having the (RC) property means precisely that M ∩Rm

is Zariski dense in M , thus 1
2 (fi + f i) = fi on M . If we define P = 1

2 (f + f) then P has real coefficients and

restricted to M equals f .

Take g ∈ R[N ], then f∗(g) ∈ C[M ] and f∗(g) = g ◦f = g ◦P on M . Since g and P have real coefficients,

so does their composition. That is, f∗(g) ∈ R[M ]. �
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CHAPTER 5

Distinguished Orbits of Reductive Groups

We prove a generalization and give a new proof of a theorem of Borel-Harish-Chandra on closed orbits of

linear actions of reductive groups. Consider a real reductive algebraic group G acting linearly and rationally

on V . G can be viewed as the real points of a complex reductive group GC which acts on V C := V ⊗ C. In

[BHC62] it was shown that GC · v ∩ V is a finite union of G-orbits; moreover, GC · v is closed if and only if

G ·v is closed, see [RS90]. We show that the same result holds not just for closed orbits but for the so-called

distinguished orbits. An orbit is called distinguished if it contains a critical point of the norm squared of the

moment map on projective space. Our main result compares the complex and real settings to show G · v is

distinguished if and only if GC · v is distinguished.

In addition, we show that if an orbit is distinguished, then under the negative gradient flow of the norm

squared of the moment map the entire G-orbit collapses to a single K-orbit. This result holds in both the

complex and real settings.

1. Introduction

An analytical approach to finding closed orbits in the complex setting was developed by Kempf-Ness

[KN78] and extended to the real setting by Richardson-Slodowy [RS90]. From their perspective, the closed

orbits are those that contain the zeros of the so-called moment map. However, one can consider more

generally critical points of this moment map on projective space. Work on the moment map in the complex

setting has been done by Ness [NM84] and Kirwan [Kir84]. Following those works, the real moment map

was explored in [Mar01] and [EJ].

Consider a real linear reductive group G acting linearly on V . There is a complex linear reductive group

GC such that G is a finite index subgroup of the real points of GC; moreover, GC acts on the complexifca-

tion V C of V . The linear action of G, respectively GC, extends to an action on real projective space PV ,

respectively complex projective space CP(V C). For v ∈ V , we call an orbit G · v, or G · [v], distinguished

if the orbit G · [v] in real projective space contains a critical point of ||m||2, the norm square of the real

moment map. Similarly, for v ∈ V C, we call an orbit GC · v, or G · π[v], distinguished if the orbit GC · π[v] in

complex projective space contains a critical point of ||µ∗||2, the norm square of the complex moment map.

Here π : RPV C → CP(V C) is the natural projection. Our main theorems are

Theorem 5.7 Given G � V , GC � V C, and [v] ∈ PV we have
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G · [v] is a distinguished orbit in PV if and only if GC · π[v] is a distinguished orbit in

CP(V C).

Here π : PV ⊆ RPV C → CP(V C) is the usual projection.

Theorem 5.9 For x ∈ CP(V C), suppose GC · x ⊆ CP(V C) contains a critical point of ||µ∗||2. If

z ∈ C ⊆ CP(V C) is such a critical point, then C ∩GC · x = U · z. Moreover, U · z =
⋃
g∈GC

ω(gx).

Theorem 5.10 For x ∈ PV , suppose G · x ⊆ PV contains a critical point of ||m||2. If z ∈ CR ⊆ PV is

such a critical point, then CR ∩G · x = K · z. Moreover, K · z =
⋃
g∈G

ω(gx).

Here µ∗ is the moment map for the action of GC on CP(V C) and C is the set of critical points of ||µ∗||2

in CP(V C), while m is the moment map for the action of G on PV and CR is the set of critical points of

||m||2 in PV . The fact that C ∩GC · x = U · z was proven in [NM84] in the complex setting; the fact that

CR ∩ G · x = K · z was proven in [Mar01] in the real setting. The fact that the orbit collapses under the

negative gradient flow of ||µ∗||2, respectively ||m||2, to a single U -orbit, respectively K-orbit, is our new

contribution.

The value of Theorem 5.7 is as follows. Since GC · v∩V is a finite union of G-orbits, if we can show that

one of these G-orbits is distinguished then all of them are. This has been applied to the problem of finding

generic 2-step nilpotent Lie groups which admit soliton metrics. See Chapters 6 and 7 for more information

on the soliton problem.

2. Notation and Technical Preliminaries

Our goal is to study closed reductive subgroups G of GL(E) which are more or less algebraic. Here E

is a real vector space and we denote its complexification by EC = E ⊗C. We call a subgroup H of GL(E) a

real algebraic group if H is the zero set of polynomials on GL(E) with real coefficients; that is, polynomials

in R[GL(E)]. For basic definitions and results on real algebraic groups see Section 1.2.

We say that a group G ⊂ GL(E) is a real linear reductive group if G is a finite index subgroup of a real

algebraic reductive group H; that is, G satisfies H0 ⊆ G ⊆ H, where H0 is the Hausdorff identity component

of H. It is well-known that there exists a complex (algebraic) reductive group GC defined over R such that

G is Zariski dense in GC and is a finite index subgroup of the real points GC(R) := GC ∩GL(E) of GC; that

is, GC(R)0 ⊆ G ⊆ GC(R). See Proposition 1.5 for the construction of such a complex group.

It is an important observation that each component of GC intersects G. The importance of this ob-

servation is made clear in the following proposition where certain inner products on real vector spaces are

extended to their complexifications.
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Let V be a real vector space and denote its complexification by V C = V ⊗ C. We will consider repre-

sentations ρ : G → GL(V ) that are the restrictions of morphisms ρC : GC → GL(V C) of algebraic groups.

We will call such a representation a rational representation of G (cf. Section 1.3). Note: We will denote the

induced Lie algebra representation by the same letter.

We recall the following results from Propositions 2.16 and 2.17.

Proposition. Let G be defined as above and ρ : G→ GL(V ) a rational representation, then

(a) There exists a K-invariant inner product on V such that G is self-adjoint; hence, the Lie algebra

L(G) = g is also self-adjoint. That is, there exist Cartan involutions θ, θ1 on G, ρ(G), respectively,

such that ρ ◦ θ = θ1 ◦ ρ.

(b) There exist decompositions of G and g, called Cartan decompositions, so that G = KP as a product

of manifolds and g = k ⊕ p. Here K = {g ∈ G | θ(g) = g} is a maximal compact subgroup of G,

k = L(K) = {X ∈ g | θ(X) = X}, p = {X ∈ g | θ(X) = −X}, and P = exp(p). Moreover, there

exists an AdK-invariant inner product 〈〈·, ·〉〉 on g so that g = k⊕ p is orthogonal.

(c) The inner product 〈·, ·〉 on V is K-invariant, ρ(X) are symmetric transformations for X ∈ p, and

ρ(X) are skew-symmetric transformations for X ∈ k.

Proposition. The K-invariant inner product <,> on V , described above, extends to a U -invariant

inner product S on V C with a similar list of properties for GC. Here U is a compatible maximal compact

subgroup of GC (cf. Section 2.2). Additionally, the inner product �,� on g extends to an Ad U -invariant

inner product S on gC.

Recall that the inner products on our complex spaces are said to be compatible with the inner products

on the underlying real spaces.

Moment maps. We recall the definitions and basic results concerning moment maps. See Chapter 2

for more information.

Real moment maps. Given G � V we define m̃ : V → p implicitly by

� m̃(v), X � = < Xv, v >

for all X ∈ p. Notice that m̃(v) is a real homogeneous polynomial of degree 2. Equivalently, we really could

define m̃ : V → g; then using K-invariance and k ⊥ p we obtain m̃(V ) ⊆ p.

We can just as well do this for GC � V C where we regard GC as a real Lie group. We use the inner

product S on V C. The (real) moment map for GC � V C, denoted by ñ : V C → q, is defined by

S(ñ(v), Y ) = S(Y v, v)

for Y ∈ q and v ∈ V C.
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Since these polynomials are homogeneous, they give rise to well defined maps on (real) projective space.

Define

m : PV → p n : RPV C → q

m[v] = m̃( v
|v| ) = m̃(v)

|v|2 n[w] = ñ( w
|w| ) = ñ(w)

|w|2

where |w|2 = S(w,w) and S =<,> on V . Since V ⊆ V C we have PV ⊆ RPV C; this is our main reason for

studying the real moment map on GC. The following is Lemma 2.24; this lemma compares these two real

moment maps.

Lemma. n restricted to PV equals m.

Complex moment maps. We choose a notation that is similar to Ness [NM84] as we are following

her definitions; the only difference is that we use µ where she uses m. For v ∈ V C, consider ρv : GC → R

defined by ρv(g) = |g ·v|2, where |w|2 = H(w,w) = S(w,w). Define a map µ : CP(V C)→ q∗ = Hom(q,R) by

µ(x) = dρv(e)
|v|2 , where v ∈ V C sits over x ∈ CP(V C), cf. [NM84, section 1]. We define the complex moment

map µ∗ : CP(V C)→ q by µ = S(µ∗, ·). Note, taking the norm square of our complex moment map will give

us the norm square of the moment map in Kirwan’s setting; in Kirwan’s language iµ would be the moment

map [NM84, section 1].

Let π denote the projection π : RPV C → CP(V C). The following is proven in Lemma 2.25.

Lemma. The complex and real moment maps for GC are related by µ∗ ◦ π = 2n

Remark. Since PV is not a subspace of CP(V C), we use RPV C and the real moment map of GC to work

between the known results of Kirwan and Ness to get information about our real group G � PV .

3. Comparison of Real and Complex Cases

Most of algebraic geometry and Geometric Invariant Theory has been worked out exclusively for fields

which are algebraically closed. We are interested in the real category and will exploit all the work that has

already been done over C. We use and refer the reader to Chapters 1 and 2 as our main reference for real

algebraic varieties.

Recall that our representation ρ : G→ GL(V ) is the restriction of a representation of GC. The following

is proposition 2.3 of [BHC62] and section 8 of [RS90]. Originally this was stated as a comparison between

GC(R)0-orbits and GC-orbits, however, it can be restated as a comparison between G and GC orbits, for any

G satisfying GC(R)0 ⊆ G ⊆ GC(R). This is true as GC(R)0 has finite index in G. (This theorem has already

been stated in the text; see Theorem 2.30.)

Theorem. Let v ∈ V , then GC · v ∩ V =
m⋃
i=1

Xi where each Xi is a G-orbit. Moreover, GC · v is closed

in V C if and only if G · v is closed in V .
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Orbits in Projective space. Since our groups act linearly on vectors spaces we can consider the

induced actions on projective space G � PV and GC � RPV C.

We recall Lemma 2.33 for later use.

Lemma. For v ∈ V , GC · [v] ∩G · [v] = G · [v] in RPV C.

4. Closed and Distinguished Orbits

We use the known results for closed orbits and the moment map to motivate our treatment of the nullcone

and distinguished orbits. Below we recall some of the work from Chapter 2. We begin with a theorem of

Richardson and Slodowy. To find which orbits are closed, one looks for the infimum of |g ·v|2 along the orbit.

Such a vector is called a minimal vector and it occurs on the orbit precisely when our orbit is closed. Let M

denote the set of minimal vectors in V . The following is a combination of Theorem 2.21 and Corollary 2.23.

Theorem 5.1. G · v is closed if and only if there exists w ∈ G · v such that m̃(w) = 0. Such a vector w

is minimal. Moreover, M = m̃−1(0) and G · v ∩M is a single K-orbit.

Equivalently we could find the zero’s of ||m̃||2 to find the minimal vectors. Minimal vectors are used

to understand the semi-stable points, that is, all the vectors whose orbit closure does not contain zero. In

contrast, the null cone is the set of vectors whose orbit closure does contain zero. To study the null cone,

we move to projective space. Clearly we cannot use minimal vectors to study the geometry of the null cone,

so instead of looking for zeros of ||m||2 on PV we look for critical points of ||m||2.

Definition 5.2. We say that v ∈ V or [v] ∈ PV is distinguished if ||m||2 : PV → R has a critical point

at [v]. We say that an orbit G · v or G · [v] is distinguished if it contains a distinguished point. Analogously,

we define distinguished points and GC-orbits in V C and CP(V C) using ||µ∗||2.

Minimal vectors are distinguished as zero is an absolute minimum of the function ||m||2. Our goal is to

find an analogue of Theorem 2.30 for distinguished orbits. To understand critical points of ||m||2, we will

find a way to relate this function to ||µ∗||2 by means of ||n||2. Recall that ||µ∗||2 has been studied extensively

in [NM84, Kir84].

Our first observation is that the only closed orbits G · [v] ⊆ PV occur when G · [v] = K · [v]. This is well

known, but an elegant and geometric proof is easily obtained using properties of the moment map; see, e.g.,

[Mar01, Theorem 1]. So our main interest is in the remaining distinguished orbits.

Proposition 5.3. If [v] ∈ PV , then grad ||n||2[v] = grad ||m||2[v] ∈ T[v]G · [v]. Hence, ||n||2 has a

critical point at [v] ∈ PV ⊆ RPV C if and only if ||m||2 does so. Moreover, if [v] ∈ PV , and ϕt[v] is the

integral curve of −grad ||n||2 starting at [v], then ϕt[v] ∈ G · [v] ⊆ PV for all t.

Before proving the proposition, we study the gradients of these functions. Let φ : GC×V C → V C denote

the action of GC on V C, and let φv : GC → V C denote the induced map for every v ∈ V C. We define vector

62



fields on V C and RPV C as follows. On V C we define

X̃α(v) := dφv(α) =
d

dt

∣∣∣∣
t=0

exp tα · v

for α ∈ gC. And on RPV C

Xα[v] := π∗X̃α(v)

where π : V C → RPV C is projection. Note, this is well defined as our action GC � V C is linear.

Lemma 5.4. For x ∈ PV , grad ||m||2(x) = 4Xm(x)(x). For x ∈ RPV C, grad ||n||2(x) = 4Xn(x)(x).

Marian proves the first statement for ||m||2 on PV , see [Mar01, Lemma 2]. Her proof carries over to

obtain the statement for ||n||2 on RPV C.

Proof of proposition 5.3. The first assertion follows from Lemma 5.4, Lemma 2.24, and the fact

that m[v] ∈ p ⊆ g for [v] ∈ PV . The second and third assertions follow immediately from the first. �

Next we relate the actions of our complex group GC on RPV C and CP(V C). By Lemma 2.25 we know

||µ∗ ◦ π[v]||2 = 4||n[v]||2 for v ∈ V ⊆ V C and π : RPV C → CP(V C). This shows that ||n||2 is not just

U -invariant, it is also U × C∗-invariant. We wish to relate the actions of GC on RPV C and CP(V C) by

comparing their gradients from the natural Riemannian structures on these projective spaces.

The Riemannian structures and gradients on projective space. Recall that projective space can

be endowed with a natural Riemannian metric so that projection from the vector space is a Riemannian

submersion. This natural Riemannian metric is called the Fubini-Study metric and is defined as follows.

Take ζi ∈ T[w]KP(V C), where K = R or C. Let ΠK : V C → KP(V C) be the usual projection and take

ξi ∈ TwV C such that ΠK
∗ (ξi) = ζi. The Fubini-Study metric on KP(V C) is defined by

(ζ1, ζ2) =
(ξ1, ξ2)(w,w)− (ξ1, w)(ξ2, w)

(w,w)

One can naturally identify the tangent space TΠK(w)KP(V C) with the orthogonal compliment of K −

span < w > in TwV C. In our setting, we are using S, the extension of <,> on V , as our inner product on V C.

Using these natural choices of Riemannian structures on RPV C and CP(V C) we see that π : RPV C → CP(V C)

is also a Riemannian submersion.

We are interested in the negative gradient flow of the moment map. Let ϕt denote the negative gradient

flow of ||n||2 on RPV C and ||µ∗||2 on CP(V C).

Definition 5.5. The ω-limit set of ϕt(p) ⊆ RPV C is the set {q ∈ RPV C | ϕtn(p)→ q for some sequence tn →

∞ in R}. We denote this set by ω(p).
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Analogously, we can define the ω-limit set of ϕt(p) ⊆ CP(V C) and we denote this set by ω(p) also. It is

easy to see that ω(p) is invariant under ϕt for all t.

Remark. We observe that points in the ω-limit set of a negative gradient flow are fixed points of the

flow, that is, critical points of the given function. In general this is not true for ω-limit points associated to

non-gradient flows. We include a brief argument for the reader.

Consider F : M → R and let ϕt(p) denote the integral curve of −grad F starting at p ∈ M . Observe

that F is decreasing along ϕt(p). Suppose ω(p) is non-empty. Then we can define c = lim
t→∞

F (ϕt(p)) to

obtain ω(p) ⊆ F−1(c). Thus for q ∈ ω(p) we see that ϕt(q) ⊆ F−1(c). Hence, grad F (q) = 0. That is, points

in the ω-limit set of −grad F are critical points for F .

Proposition 5.6. Endow RPV C and CP(V C) with the Riemannian metrics so that the projections from

V C are Riemannian submersions. Then the following are true for [v] ∈ RPV C

(a) 4π∗ grad ||n||2[v] = grad ||µ∗||2(π[v])

(b) [v] ∈ RPV C is a critical point of ||n||2 if and only if π[v] ∈ CP(V C) is a critical point of ||µ∗||2.

(c) ϕt◦π = π◦ϕ4t, where ϕt denotes the negative gradient flow of ||n||2 on RPV C or ||µ∗||2 on CP(V C).

(d) π(ω([v])) = ω(π[v]), where ω(p) denotes the ω-limit set of the negative gradient flow starting from

p.

Proof. Applying Lemma 2.25 we have

4 < grad||n||2[v], w[v] > = 4
d

dt

∣∣∣∣
t=0

||n[v + tw]||2

=
d

dt

∣∣∣∣
t=0

||µ∗π[v + tw]||2

= < grad||µ∗||2(π[v]), π∗w[v] >

Since π∗ is a submersion we have that π∗ maps the horizontal subspace of T[v]RPV C isometrically onto

Tπ[v]CP(V C) and part a. is proven. Thus if [v] is a critical point for ||n||2, then π[v] is one for ||µ∗||2. To

obtain the reverse direction use the C∗-invariance of ||n||2. This proves part b.

Proof of part c. Let [v] ∈ RPV C. Consider the curve π ◦ ϕ4t[v] in CP(V C). This curve satisfies the

following differential equation

d

dt
π ◦ ϕ4t[v] = π∗ 4(−grad ||n||2)(ϕ4t[v]) = −grad ||µ∗||2(π ◦ ϕ4t[v])

That is, the curve π ◦ ϕ4t[v] is the integral curve of the negative gradient flow of ||µ∗||2 starting at π[v].

Thus, π ◦ ϕ4t = ϕt ◦ π.

Proof of part d. We will show containment in both directions. Take p ∈ ω[v], then there exists a sequence

of tn →∞ such that ϕtn [v]→ p in RPV C. Using part c, we have ϕtn/4(π[v]) = π ◦ ϕtn [v]→ π(p). That is,

π(p) ∈ ω(π[v]), or π(ω[v]) ⊆ ω(π[v]). To obtain the other direction, take q ∈ ω(π[v]) and tn → ∞ so that
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ϕtn(π[v]) → q in CP(V C). Consider the set ϕ4tn [v] in RPV C. Since RPV C is compact, we can find a limit

point of this set and passing to a subsequence we may assume ϕ4tn [v]→ p. Then p ∈ ω[v], π(p) = q by (c)

and we have shown q ∈ π(ω[v]). That is, ω(π[v]) ⊆ π(ω[v]). �

We finish the section by stating our main theorem and some corollaries.

Theorem 5.7. Given G � V , GC � V C, and [v] ∈ PV we have

G · [v] is a distinguished orbit in PV if and only if GC · π[v] is a distinguished orbit in

CP(V C).

Here π : PV ⊆ RPV C → CP(V C) is the usual projection.

Remark. Analysis of the proof of Theorem 5.7 shows the following. Given v ∈ V ⊆ V C, the orbits

G · [v] ⊆ PV and GC ·π[v] ⊆ CP(V C) being distinguished is equivalent to GC · [v] ⊆ RPV C being distinguished

using ||n||2 on RPV C.

Corollary 5.8. Suppose we have v1, v2 ∈ V with distinct G-orbits but whose GC-orbits are the same.

Then G · [v1] is distinguished if and only if G · [v2] is distinguished.

Remark. The phenomenon of two vectors having different real orbits but the same complex orbit hap-

pens often. This corollary was a necessary ingredient in the solution to the problem of showing that generic

2-step nilmanifolds admit soliton metrics. See Chapter 7.

5. Proofs of Main Theorems

Here we prove Theorem 5.7 on distinguished orbits. To do this, we first prove a statement for complex

moment maps in the complex setting. Then we will relate the complex moment map information to the real

moment map for the GC action.

Remark. For x ∈ CP(V C), the critical points of ||µ∗||2 restricted to GC ·x are precisely the critical points

of ||µ∗||2 as a function on CP(V C). This is because grad ||µ∗||2(x) is always tangent to GC · x. We denote

the set of critical points of ||µ∗||2 in CP(V C) by C.

Theorem 5.9. For x ∈ CP(V C), suppose GC · x ⊆ CP(V C) contains a critical point of ||µ∗||2. If

z ∈ C ⊆ CP(V C) is such a critical point, then C ∩GC · x = U · z. Moreover, U · z =
⋃
g∈GC

ω(gx).

Let CR denote the set of critical points of ||m||2 on PV . We have a real analogue of the theorem above.

Theorem 5.10. For x ∈ PV , suppose G · x ⊆ PV contains a critical point of ||m||2. If z ∈ CR ⊆ PV is

such a critical point, then CR ∩G · x = K · z. Moreover, K · z =
⋃
g∈G

ω(gx).
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Before proving Theorems 5.9 and 5.10, we apply Theorem 5.9 to prove Theorem 5.7.

Proof of Theorem 5.7. Suppose first that G · [v] is distinguished. Then G · [v] = G · [w] where [w] is a

critical point of ||m||2. But now Proposition 5.3 implies that [w] is a critical point of ||n||2 and Proposition

5.6 implies that π[w] is a critical point of ||µ∗||2; that is, GC · π[v] is distinguished.

Now suppose GC ·π[v] is distinguished. Our goal is to show that the orbit G · [v] in PV contains a critical

point of ||m||2. We will use the GC action on RPV C and the real moment map of this action. As GC · π[v]

is distinguished, and π : GC · [v]→ GC · π[v] is surjective, there exists w ∈ GC · [v] such that π[w] ∈ GC · π[v]

is a critical point of ||µ∗||2.

Apply the negative gradient flow of ||n||2 in RPV C starting at [v] ∈ PV . By Proposition 5.3 this is

the negative gradient flow of ||m||2 and the ω-limit set ω[v] ⊆ G · [v] consists of critical points of ||n||2

and ||m||2 (see the remark following Definition 5.5). By Proposition 5.6 d and Theorem 5.9, we have

π(ω[v]) = ω(π[v]) ⊆ U · π[w]; hence, ω[v] ⊆ π−1(U · π[w]) = C∗ × U · [w] ⊆ C∗ ×GC · [v]. This implies

ω[v] ⊆ C∗ ×GC · [v] ∩G · [v] ⊆ C∗ ×GC · [v] ∩ R∗ ×G · [v] = R∗ ×G · [v] = G · [v]

by Lemma 2.33 and the fact that (R∗ ×G)C = C∗ ×GC. Hence ω[v] consists of critical points of ||m||2 that

lie in G · [v]. This proves Theorem 5.7.

Before proving Theorem 5.9, we prove Theorem 5.10. The proof of this theorem is actually embedded

in the proof of Theorem 5.7. We present it here.

Proof of 5.10 The fact that CR ∩G · x constitutes a single K-orbit is the content of [Mar01, Theorem

1]. In [Mar01] G is taken to be semi-simple; however, all the results hold for G real reductive with the same

proofs, mutatis mutandis. Our original contribution is the second statement of the theorem. We prove it

here.

Suppose G · x ⊆ PV contains a critical point z of ||m||2. Then the orbit GC · π(x) is distinguished in

CP(V C) by Theorem 5.7. The proof of Theorem 5.7 shows, for g ∈ G, ω(gx) consists of critical points of

||m||2 in G ·x. By Theorem 1 of [Mar01], we have ω(gx) ⊆ K ·z. Hence,
⋃
g∈G

ω(gx) = K ·z, since ω(y) = {y}

for all y ∈ K · z.

Lastly we have to prove Theorem 5.9. The first statement is proven in [NM84, Theorem 6.2]. That

is, the critical points of ||µ∗||2 on a GC-orbit comprise a single U -orbit. As in Theorem 5.10, our original

contribution is the second statement.

The statement that the whole orbit GC · x flows to one U -orbit U · z is plausible, but is not contained in

Kirwan’s work [Kir84]. It is a finer statement than the GC-invariance of Kirwan’s stratification of CP(V C).
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There are two problems to be aware of: first, for g ∈ GC, ω(gx) might be a set with more than one point

and, second, there is no reason to expect that ω(gx) lies entirely in the orbit GC · x. This proof is just for

the complex setting of our complex group GC � CP(V C). This is the setting of Kirwan and Ness.

Proof of 5.9 Consider an orbit GC · y which is distinguished and let z ∈ GC · y be a critical point. Let

x be any point in GC · y. To show that ω(x) ⊆ U · z, we will first show that the limit set ω(x) intersects U · z

and then show containment. First we need to recall some results from Kirwan’s work [Kir84].

We have a smooth stratification of CP(V C) into strata Sβ which are GC-invariant. The strata are

determined by a certain decomposition of the critical set C of ||µ∗||2 in CP(V C). This critical set is a finite

union C =
⋃
β∈B Cβ where ||µ∗||2 takes a constant value on Cβ and each Cβ is U -invariant. We will denote

this constant value of ||µ∗||2 on Cβ by Mβ = ||β||2; here B is actually a finite set in gC and the norm || · ||

comes from the prescribed inner product on gC.

For β ∈ B, the stratum Sβ is defined to be the set of points which flow via the negative gradient flow to

the critical set Cβ , that is, Sβ = {x ∈ CP(V C)| ω(x) ⊆ Cβ}. In particular, Cβ ⊆ Sβ . See section 2 of [Kir84]

for a detailed discussion of this Morse Theory approach to Geometric Invariant Theory. If GC · y ∩ Cβ 6= ∅

then

GC · y ∩ Cβ = U · z

for z ∈ Cβ , that is, the critical points in a GC-orbit comprise a single U -orbit, see [NM84, Theorem 6.2].

We show two things. First, if x ∈ GC · z is in a neighborhood of U · z, then ω(x) ⊆ U · z. Second, this

neighborhood of U · z in GC · z should be the entire orbit; that is, ω(x) ⊆ U · z for all x ∈ GC · z. The first

is a little more obvious but does rely on the fact that our moment map is a minimally degenerate Morse

function, see definition 10.1 of [Kir84]. That fact that ||µ∗||2 is a minimally degenerate Morse function can

be found in section 4 of [Kir84].

Fix β. We will be interested in z ∈ Cβ and the orbit GC · z. We define Oε = {x ∈ CP(V C) | ||µ∗||2(x) ∈

[ Mβ ,Mβ+ε)}∩Sβ . This is an open subset of Sβ that contains Cβ = {x ∈ Sβ | ||µ∗(x)||2 = Mβ}. We observe

that Oε is invariant under the forward flow ϕt of −grad ||µ∗||2 as ||µ∗||2 decreases along the trajectories

t → ϕt(x). Since GC · z is a submanifold of CP(V C), hence also of Sβ , Oε ∩ GC · z is open in GC · z and

contains U · z as Cβ is U -invariant.

Definition 5.11. We define {Vε,i} to be the collection of connected components of Oε ∩ GC · z that

intersect U · z. We define Vε :=
⋃
i

Vε,i.

Remark. Vε is an open set of GC ·z that contains U ·z. As U has finitely many components, U =
m⋃
i=1

φiU0

and we can write Vε =
m⋃
i=1

Vε,i where φiU0(z) ⊆ Vε,i. The Vε,i are connected and open in GC ·z as Oε∩GC ·z

67



is open in GC · z and GC · z is locally connected, see [Mun00, Theorem 25.3]. Moreover, since Oε and GC · z

are invariant under ϕt, t > 0, we see that the components Vε,i are invariant under forward flow, as well.

Proposition 5.12. There exists ε > 0 such that V ε ⊆ GC · z. Moreover, ω(Vε) = U · z for small ε > 0.

Proof. Before proving this statement, we will show that there exists some open set A containing U · z

in GC · z such that A is a compact subset of GC · z. Then we will show that Vε ⊆ A for small ε. This would

then prove the first assertion of the proposition.

Recall that GC = U exp(iLU). If we let B = the open unit ball in iLU then A = U exp(B) · z has the

said property, that is, A is a compact subset of GC · z.

Lemma 5.13. Either Vε ⊆ A or Vε ∩ ∂A 6= ∅. For small ε > 0, Vε ⊆ A.

This will follow from

Lemma 5.14. Either Vε,i ⊆ A or Vε,i ∩ ∂A 6= ∅.

To prove this lemma, suppose Vε,i 6⊆ A and Vε,i ∩ ∂A = ∅. Since Vε,i ∩ A intersects U · z, we see

that Vε,i = (Vε,i ∩ A) ∪ (Vε,i\A); that is, Vε,i is separated by these disjoint open sets. This contradicts the

connectedness of Vε,i and the lemma is proven.

We continue with the proof of the first lemma. Suppose Vε 6⊆ A for every ε > 0. Then for each ε there

exists some point pε ∈ Vε ∩ ∂A. By definition ||µ∗||2(pε) ≤Mβ + ε. Letting epsilon go to zero we can find a

limit point p∞ ∈ ∂A as ∂A is compact. Hence, p∞ ∈ GC · z−A ⊆ GC · z−U · z. Moreover, ||µ∗||2(p∞) = Mβ

and we have found a point in GC ·z which is not on U ·z but minimizes ||µ∗|| on GC ·z. This is a contradiction

since GC · z ∩ Cβ = U · z by [NM84, Theorem 6.2]. Therefore, Vε ⊆ A for small ε. This proves the first

lemma and the first claim in the proposition.

To finish the proof of the proposition, we observe that U · z = ω(U · z) ⊆ ω(Vε) since U · z ⊆ Cβ and ϕt

fixes the points of Cβ for all t. Thus we just need to show containment in the other direction. Since the set Vε

is invariant under forward flow and Vε ⊆ GC · z ⊆ Sβ , we see that ω(Vε) ⊆ Vε ∩Cβ ⊆ GC · z ∩Cβ = U · z. �

Definition 5.15. Let O = {x ∈ GC · z | ω(x) ⊆ U · z}.

Lemma 5.16. Consider the set O defined above. Then O = GC · z.

To prove the lemma it suffices to show that O is open and closed in GC ·z and intersects each component

of GC · z. To see that O intersects each component of GC · z, we observe that O contains U · z and that

each component of GC intersects U since GC = UQ and Q = exp(q) is contractible, see the remarks before

Proposition 2.17. Choose ε > 0 as in Proposition 5.12.

O is open:
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We know for small ε > 0, Vε is open in GC · z, contains U · z, and Vε is contained in O by Proposition

5.12. It suffices to consider x ∈ O\U · z. Then there exists t∗ > 0 such that ϕt∗(x) intersects Vε, from the

definition of O. But ϕ−t∗ : Vε → ϕ−t∗(Vε) is a diffeomorphism of GC · z (and also of Sβ). Thus, ϕ−t∗(Vε) is

an open set in GC · z containing x, which is contained in O. Therefore O is open.

O is closed:

We will show ∂O = ∅; here we mean the boundary of O in the topological space GC · z. Take yn ∈ O

such that yn → y ∈ GC · z. Since z ∈ Cβ ⊆ Sβ and Sβ is GC-invariant, it follows that y ∈ GC · z ⊆ Sβ

and hence ω(y) ⊆ Cβ . Thus, there exists M > 0 such that ϕM (y) ∈ Oε. We will denote the component of

Oε ∩GC · z containing ϕM (y) by Oyε ; again, this component is open in GC · z as GC · z is locally connected.

Observe that for t ≥M , ϕt(y) ∈ Oyε and ϕs(Oyε ) ⊆ Oyε for s ≥ 0 as ϕs leaves Oε ∩GC · z invariant for s ≥ 0.

Since ϕt is a diffeomorphism on Sβ which preserves GC · z, ϕ−1
M (Oyε ) is an open set of GC · z containing y.

We assert that Oyε ∩ Vε 6= ∅. Since yn ∈ O, we know there exists Tn > 0 such that ϕTn(yn) ∈ Vε, by

definition of O. Additionally, for t ≥ Tn, ϕt(yn) ∈ Vε by the flow invariance of Vε.

Pick N such that yN ∈ ϕ−1
M (Oyε ), which we can do as ϕ−1

M (Oyε ) is open and yn → y. Then we have

ϕM (yN ) ∈ Oyε , a single component of Oε ∩GC · z, and ϕTN
(yN ) ∈ Vε.

If M ≥ TN , then ϕM (yN ) = ϕM−TN
(ϕTN

(yN )) ∈ ϕM−TN
(Vε) ⊆ Vε.

That is, ϕM (yN ) ∈ Oyε ∩ Vε 6= ∅.

If TN ≥M , then ϕTN
(yN ) = ϕTN−M (ϕM (yN )) ∈ ϕTN−M (Oyε ) ⊆ Oyε .

That is, ϕTN
(yN ) ∈ Oyε ∩ Vε 6= ∅.

Thus, Oyε being a connected component of Oε ∩ GC · z which intersects Vε, a union of connected com-

ponents of Oε ∩GC · z, we have Oyε ⊆ Vε. That is, y ∈ O since ϕt(y) ∈ Vε for t ≥ M and ω(Vε) ⊆ U · z by

Proposition 5.12. This proves the lemma.

This completes the proof of Theorem 5.9.
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Part 2

Structures on Nilpotent Lie Groups



CHAPTER 6

Soliton metrics on nilmanifolds

1. Introduction

The aim of this chapter is to introduce the reader to the general results in regards to existence and

non-existence of soliton metrics on nilmanifolds.

Soliton metrics arise in the study of Einstein metrics. Originally they were discovered as special solutions

of a particular geometric evolution equation on the space of Riemannian metrics on a fixed differentiable

manifold. However, they also arise in the search for Einstein metrics on negatively curved homogeneous

manifolds.

It is well known that a homogeneous space of negative curvature is isometric to a solvable Lie group with

a left-invariant metric, see [Hei74]. In [Heb98], Heber classifies the (standard) Einstein solvmanifolds. We

note that this classification was originally done for the so-called ‘standard’ Einstein solvmanifolds, standard

being a technical requirement. While the standard Einstein metrics were shown to be an open set within

the set of Einstein metrics on solvable Lie groups, it was not known whether or not an Einstein metric had

to be ‘standard’. This question was resolved in the affirmative by Lauret in [Lau07].

Let S be a solvable Lie group with left invariant metric and N its nilradical. The Lie group N is given

the geometry of a submanifold and this is a left-invariant metric on N . If the codimension of N in S is 1,

we say that S is a rank 1 solvable extension of N . It is known that S admits an Einstein metric if and only

if S′ admits an Einstein metric where S′ is a solvable subgroup of S which is a rank one extension of N .

This reduction is Proposition 6.11 of [Heb98]. It has been shown that a rank 1 extension S′ of N admits

an Einstein metric if and only if N admits a so called soliton metric, [Lau01]. See Chapters 1 and Section

3 (below) for the definitions of Einstein and Ricci soliton metrics, respectively.

While searching for soliton metrics on nilmanifolds is interesting in its own right, by finding which

nilmanifolds admit soliton metrics we gain insight into which solvmanifolds admit Einstein metrics. Our

contribution to this problem is the following.

Theorem 7.25 A generic two-step nilmanifold admits a soliton metric.

2. Nilmanifolds and Left-invariant Geometry

Recall the following definition from Section 1.2.
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Definition. The lower central series of N is a descending series of ideals defined by

C1N = N

CnN = [N, Cn−1N]

for n ≥ 2. A Lie algebra N is called nilpotent if there exists k such that CkN = 0; moreover, we call N

k-step nilpotent if k is the smallest integer such that CkN = 0.

Observe that abelian groups are nilpotent and equal their center. The closest group to being abelian,

without actually being abelian, is a two-step nilpotent group. In this case [N,N] ⊂ Z, where Z is the center

of our two-step nilpotent algebra N.

Definition 6.1. A nilmanifold is a homogeneous space such that a nilpotent group of isometries acts

transitively on it.

It has been shown that such a manifold is actually a nilpotent Lie group N ′ which is the quotient of a

simply connected nilpotent group N by a discrete central subgroup ZΓ [Wil82]. By considering the covering

N → N/ZΓ as a local isometry, studying the left-invariant geometry of N is the same as studying the

left-invariant geometry of N ′. Therefore we reduce to the case that N ′ = N is simply connected.

Let N be a simply connected nilpotent Lie group with a left-invariant metric. Let N denote the lie

algebra of N . Then a left-invariant metric on N is equivalent to an inner product on N denoted by 〈·, ·〉.

This is the viewpoint that we will take.

Question 6.2. What are the nilpotent Lie groups that admit left-invariant Einstein metrics?

The answer is none. The following theorem of Milnor [Mil76] demonstrates why these groups do not

admit such nice metrics.

Theorem 6.3. Let (N, g) be a nilpotent Lie group with left-invariant metric. Then there exist directions

v, w ∈ N such that Ric(v) > 0 and Ric(w) < 0. Hence, N cannot admit an Einstein metric.

This leaves one asking the following philosophical question.

Question 6.4. Is there a different notion of preferred or distinguished metric that a nilpotent group can

admit? If so, what are the nilmanifolds that admit these distinguished metrics?

We argue that the correct notion of distinguished metric for nilmanifolds is the notion of a soliton metric.

3. Soliton Metrics

Soliton metrics arise naturally in the study of normalized Ricci flow on a compact manifold (M, g). Ricci

flow, respectively normalized Ricci flow, is a geometric evolution equation which evolves a given metric g0
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according to the differential equation ∂
∂tg = −2ric, respectively ∂

∂tg = −2ric + 2 sc(g)
n g, where ric is the

Ricci (2, 0) tensor of (M, g) and sc is the scalar curvature function. The fixed points of normalized Ricci

flow are the Einstein metrics on M . However, one can consider special solutions to these equations which

evolve via diffeomorphisms and rescaling; that is, the solution looks like g(t) = σ(t)ψ∗t g0, where σ(t) is a

scalar function of time, ψt are diffeomorphisms, and g0 is the initial metric that we started with. The idea

is that one is just rescaling space and time.

The initial metric g0 is called a (homothetic) Ricci soliton of the Ricci flow, resp. normalized Ricci flow,

if g(t) = σ(t)ψ∗t g0 is a solution to the Ricci flow, resp. normalized Ricci flow. It is a simple exercise to show

that a metric g0 is a homothetic Ricci soliton for Ricci flow if and only if it is a homothetic Ricci soliton for

normalized Ricci flow. For a comprehensive introduction to Ricci flow and Ricci solitons see [CK04].

Consider a nilpotent Lie group N with left-invariant metric g0. As g0 is left invariant, any solution

g(t) = σ(t)ψ∗t g0 to Ricci flow will also be left invariant. We call a left-invariant Ricci soliton a nilsoliton.

For nilmanifolds the following algebraic characterization was given in [Lau01, Proposition 1.1].

Proposition 6.5. Let (N, g) be a nilpotent group N with left invariant metric g. Then g is a soliton

metric if and only if

ricg = cI +D

for some c ∈ R and some symmetric D ∈ Der(N).

Remark. Note that when the metric g is a soliton metric, the derivation D is symmetric with respect to

g since Id and Ricg are symmetric. Moreover, it can be shown that the eigenvalues of D (up to scaling) lie

in N.

We will take the characterization of nilsolitons in the proposition to be our working definition of a metric

being a soliton metric. On two-step nilmanifolds there is a special kind of soliton metric called optimal metric,

see Definition 7.7. These special metrics were first discovered in [EH96] and have many strong geometric

properties.

We are interested in when our Lie algebra will admit a soliton metric. More precisely, we want to know

when our Lie algebra admits an inner product so that the associated left-invariant metric on our Lie group

is a soliton metric. To do this, we can think of varying the inner products on our Lie algebra or we can vary

the bases of our Lie algebra and declare them to be orthonormal, see the following Section. These yield the

same outcome and are only different in perspective. We will adopt the latter view. That is, we will vary

our bases and assign the inner product so that the bases are orthonormal. If we can find a basis so that the

associated metric algebra is soliton, we say that our algebra admits a soliton metric.

Recall from [Lau01] that a simply connected nilpotent Lie group N admits a soliton metric if and only

if N is the nilradical of a rank 1 solvable extension S that admits an Einstein metric. See Proposition 6.13.

Definition 6.6. A nilpotent Lie algebra N is called an Einstein nilradical if N admits a soliton metric.
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With Lauret’s algebraic characterization of soliton metrics many existence and non-existence results have

been obtained for the general case of k-step nilpotent groups. We briefly record some of the known facts

concerning which nilpotent Lie groups do and do not admit soliton metrics; for proofs and more detailed

exposition on the soliton problem for nilmanifolds see [LW] and references therein. Not much attention has

been placed exclusively on two-step nilmanifolds.

Proposition 6.7. (Necessary condition for existence) Let N be a nilpotent Lie group with a left invariant

metric. If N admits a soliton metric, then N necessarily admits an N-grading. That is, there exists a

decomposition N = ⊕Ni such that [Ni,Nj ] ⊂ Ni+j.

Remark. The existence of an N-grading on N is equivalent to the existence of a symmetric derivation

whose eigenvalues are integral. When the algebra admits a soliton metric, one can choose the symmetric

derivation that is given in the previous proposition.

Proposition 6.8. (Non-existence result) Let N be a nilpotent algebra. We say that N is characteristi-

cally nilpotent if Der(N) consists only of nilpotent elements. Such an algebra cannot admit a soliton metric

as there do not exist any symmetric derivations.

All metric two-step nilalgebras have a natural N-grading. Consider N = V ⊕ Z the orthogonal de-

composition relative to our metric, where Z is the center and V its orthogonal compliment. Then define

D : N→ N

D =

 Id on V

2Id on Z

This is a derivation which is symmetric and has integer eigenvalues. Naturally the question was asked: Do

all two-steps admit nilsolitons? The answer to this question turns about to be no, see the Theorem 6.10

below. However, as our main result shows, most two-step nilmanifolds admit a soliton metric, see Theorem

7.25.

Proposition 6.9. (Existence result) Every nilpotent Lie group of dimension ≤ 6 admits a soliton metric.

See [Wil03] for a proof of this fact.

Theorem 6.10. (Non-existence result) There exist two-step nilmanifolds which do not admit an Einstein

metric.

In [LW], Lauret and Will constructed two-step nilalgebras that cannot possibly admit a soliton metric.

They achieved their results by a finer analysis of the so called “eigenvalue type” of an algebra. In our context,

that work can be summarized as follows. See Section 7.1 for the definition of algebras of type (p, q).
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Corollary 6.11. Consider (p, q) = (m + 2t,m + t + 1) for m ≥ 1 and t ≥ 0. All but finitely many of

these types have nilalgebras that will not admit a soliton metric.

In contrast, it is easy to see that all algebras of type (1,q) admit soliton metrics. We suspect that this

rigidity happens for some other (p, q) types as well.

Nilgeometry and Negative Curvature. The geometry of nilmanifolds is intimately related to that

of solvmanifolds. Recall that negatively curved homogeneous spaces are isometric to solvable Lie groups

endowed with left invariant metrics, see [Hei74]. The following tight relationship to negative curvature was

obtained in [Lau01, Theorem 3.7].

Definition 6.12. Let S be a solvable Lie group and let s denote the Lie algebra of S. If we denote the

nilradical of s by N, then as a vector space we can decompose s = a⊕N where a is a complementary vector

space to N. The Lie group S and the Lie algebra s are said to be of rank k if dim a = k.

Proposition 6.13. Let (N, g) be a nilsoliton. Then there exists a solvmanifold (S, g̃) such that

(i) dimS = dimN + 1

(ii) N is the nilradical of S

(iii) g̃|N = g and (S, g̃) is Einstein

Such a solvmanifold S is called a rank 1 extension of N . Conversely, if S is a rank 1 Einstein manifold,

then the nilradical N is a soliton.

It was known that any standard Einstein solvmanifold could be reduced to a rank 1 Einstein solvmanifold.

This was developed in [Heb98, Section 4.5] where the standard Einstein solvmanifolds were classified. We

know that a rank 1 solvmanifold S is a standard Einstein solvmanifold if and only if its nilradical is soliton, by

the theorem above. However, it was only recently shown that an Einstein solvmanifold had to be standard.

See [Lau07]. In this way, by classifying which nilalgebras admit soliton metrics we are able to classify which

solvmanifolds admit Einstein metrics.

4. Algebraic Group actions, Moment Maps, and Einstein Nilradicals

Let N be a vector space. We are interested in studying the nilpotent Lie algebra brackets and inner

products that can be put on N. To do this, we consider the following space
∧2

N∗ ⊗N. This is the space

of skew-symmetric bilinear forms on N. We can further reduce to the set N ⊂
∧2

N∗ ⊗N which is the real

algebraic variety which consists of nilpotent Lie algebra structures. To see that this is a variety, observe that

the Jacobi condition and Cartan’s criterion for nilpotency are described by polynomials.

Consider an inner product <,> on N. For µ ∈ N ⊂
∧2

N∗⊗N, we denote by (Nµ, <,>) the nilpotent Lie

algebra with bracket structure µ and metric <,>; similarly, we denote by (Nµ, <,>) the simply connected

Lie group over Nµ with the corresponding left-invariant metric.
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The group GL(N) acts on the variety N ⊂
∧2

N∗ ⊗N. For µ ∈ N and g ∈ GL(N) we have

g · µ(X,Y ) = gµ(g−1X, g−1Y )

for X,Y ∈ N. Lauret [Lau01] has shown that the orbit GL(N) · µ corresponds to the set of metric Lie

algebras with underlying bracket structure µ. In this way, one sees that fixing the inner product on N while

varying the bracket structure is equivalent to fixing the bracket structure while varying the inner product.

This perspective has been very fruitful. We use the same philosophy to study the two-step nilpotent Lie

algebras, see Chapter 7.

Moreover, Lauret’s work shows the following. The fixed inner product on N extends naturally to an

inner product on
∧2

N∗⊗N. In addition, the group GL(N) is self-adjoint with respect to this inner product.

Although not phrased using the language of distinguished orbits, the following is Theorem 4.2 of [Lau01].

Theorem 6.14 (Lauret). Let µ ∈ N ⊂
∧2

N∗ ⊗N. Then Nµ is an Einstein nilradical if and only if the

orbit GL(N) · µ is a distinguished orbit.

Recall that distinguished orbits are those that attain critical points of the norm squared of the moment

map on projective space, cf. Chapter 5.
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CHAPTER 7

Two-step Einstein Nilradicals

The goal of this chapter is to show that a generic two-step nilmanifold admits a soliton metric; that

is, generic two-step nilmanifolds are Einstein nilradicals. In fact, we show that except for a small class,

most two-step nilmanifolds admit so-called optimal metrics. Optimal metrics are soliton metrics with the

additional strong property of geodesic flow invariance. Moreover, we use this approach to calculate the

dimension of the moduli of soliton metrics up to scaling and isometry around certain generic points. In

[Heb98] Heber calculates the dimension of the moduli space around the rank 1 symmetric spaces, until now

this was all that was known in regards to the size of the moduli space.

It has been shown that there do exist two-step nilmanifolds that do not admit soliton metrics, see [LW].

Below we motivate why the set of two-step nilmanifolds is a natural setting for our question.

Our proof of the main theorem follows the works of Lauret and Eberlein. The relationship between

left-invariant soliton metrics on nilmanifolds and Geometric Invariant Theory was first worked out by Lauret

in [Lau05]. Eberlein used the methods and results of Lauret to study the Ricci tensor of a metric two-step

nilpotent Lie group in [Ebe07]. We use theorems of Littlemann-Knopf, Elashvili, and Popov to obtain our

result.

1. Two-step Nilmanifolds and Their Stratification

Remark. Our use of the term stratification is in the loose sense; that is, we simply mean a decomposition

of the space.

In this chapter, N will denote a simply connected, two-step nilpotent Lie group, see Section 1.2 for the

definition of nilpotent. We denote the Lie algebra of N by the gothic letter N. Two-step nilpotent groups

are the closest groups to being abelian without actually being such. In this case we have [N,N] ⊂ Z, where

Z is the center of our two-step nilpotent algebra N.

As stated before, a left-invariant metric on N is equivalent to an inner product on N. We denote such

an inner product by <,>. Let Z denote the center of N. Then [N,N] ⊂ Z and we have an orthogonal

decomposition N = V ⊕ [N,N]. Since [V,V] ⊂ Z, we can recover all of the algebra information from the

j-map defined by

〈j(Z)v, w〉 = 〈[v, w], Z〉

78



For each Z ∈ [N,N] the map j(Z) : V → V is skew-symmetric. Equivalently, one could define j(Z)v =

(ad v)∗Z, where (ad v)∗ is the metric adjoint of ad v relative to the fixed inner product <,> on N. We

have a linear map j : [N,N]→ so(V). In the event that j has more structure, e.g. is the representation of a

compact algebra, much more can be said about the geometry of N. For example, this is how the naturally

reductive nilmanifolds arise. See [Lau98, Gor85].

Aroldo Kaplan first used the j-map to study the geometry of nilpotent groups of Heisenberg type in

[Kap83]. Eberlein then used the j-map to study all two-step nilgroups. The next two results are propositions

2.5 and 2.7 from [Ebe94].

Proposition 7.1. Let ric denote the (2,0)-ricci tensor and Ric denote the (1,1)-ricci tensor. These

tensors are related by ric(X,Y ) = 〈Ric(X), Y 〉 for X,Y ∈ N. The following are true

(i) ric(X,Z) = 0 for X ∈ V and Z ∈ Z. So Ric leaves V and Z invariant.

(ii) If {Z1, . . . , Zm} is an orthonormal basis of Z, then Ric|V = 1
2

∑m
k=1 j(Zk)2. From this one sees

that Ric|V is negative definite as the j(Zk)2 have non-positive eigenvalues.

(iii) ric(Z,Z∗) = − 1
4 trace{j(Z) ◦ j(Z∗)}. Thus, Ric|Z is positive semi-definite. The kernel of Ric in

N = {Z ∈ Z : j(Z) = 0} = {Z ∈ Z : Z is orthogonal to [N,N]}.

Remark. If we write N as an orthogonal direct sum V ⊕ [N,N], then the proposition above is modified

as follows. Assertion (i) remains true with Z replaced by [N,N]. In (ii) Ric|V is negative semidefinite if

{Z1, . . . , Zk} is an orthonormal basis of [N,N] and Ker Ric|V is the common kernel of {j(Z) : Z ∈ [N,N]}.

In (iii) Ric|[N,N] is positive definite.

Proposition 7.2. Let N be a simply connected 2-step nilpotent Lie group with left-invariant metric

〈·, ·〉. Let E = {Z ∈ Z : j(Z) = 0} and let N∗ denote its orthogonal compliment in N relative to our inner

product 〈·, ·〉. Then

(i) E and N∗ are commuting ideals in N and N is the direct product of the subgroups N∗ = exp(N∗)

and E = exp(E).

(ii) N is isometric to the Riemannian product of the totally geodesic submanifolds N∗, E, and E is the

Euclidean de Rham factor.

To study the geometry of N and classify our two-step nilalgebras it is simpler to strip off this Euclidean

de Rham factor. In regards to our goal of studying which nilalgebras admit a soliton metric we will see that

this Euclidean de Rham factor is irrelevant (see Proposition 7.13).

Nilalgebras of type (p,q).

Definition 7.3. Let N = V ⊕ [N,N] be a two-step nilalgebra. We say that N is of type (p, q) if

dim[N,N] = p and dimV = q.
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Remark. No inner product has been assigned to N at this point and the decomposition above is merely a

direct sum. Additionally, for any choice of metric <,>, N has no Euclidean de Rham factor precisely when

Z = [N,N].

Given a metric algebra N = V ⊕ [N,N], take a basis B = {v1, . . . , vq, Z1, . . . , Zp} which respects our

decomposition. Such a basis is called an adapted basis, see [Ebe03] for more details. Consider the structure

coefficients defined by

[vi, vj ] =
∑
k

CkijZk

If our basis were orthonormal, then we could equivalently say Ckij = 〈[vi, vj ], Zk〉. Note the skew-symmetry

in i, j. The structure coefficients completely determine the bracket structure of our algebra. We can organize

these as a p-tuple of matrices C = (C1, . . . Cp) ∈ so(q,R)p. These matrices are called the structure matrices

of N determined by the above adapted basis. It is easy to see that the {Ci} are linearly independent, and

in particular p ≤ D = dim so(q,R) = 1
2q(q − 1).

The example Rp+q(C).

Conversely, if we were given a p-tuple C = (C1, . . . Cp) ∈ so(q,R)p where the Ci are linearly independent,

then we could associate a metric two-step nilpotent algebra of type (p, q) to it. To do this, just use the

standard orthonormal basis {e1, . . . , eq} as our orthonormal basis of V = Rq and take {eq+1, . . . , eq+p} to

be an orthonormal basis of [N,N] = Rp. Then define the bracket relations on this vector space with inner

product as above using our p-tuple C. That is, [ei, ej ] =
∑
k C

k
ijeq+k. The metric nilalgebra constructed in

this way will be denoted by Rp+q(C). It is easy to check that the structure matrices of the adapted basis

{e1, . . . , ep+q} are {C1, . . . , Cp}.

Note that Z = [N,N]⊕E , where E ⊂ V ' Rq is the common kernel of all the structure matrices. Having

no Euclidean de Rham factor is equivalent to Z = [N,N], which is a very natural condition. The algebras of

type (p, q) with no Euclidean de Rham factor form a Zariski open set in so(q,R)p; the relationship between

nilalgebras of type (p, q) and points in the space so(q,R)p is described in Proposition 7.4. This open set is

always non-empty except in the case (p, q) = (1, 2k + 1). In regards to finding those algebras which admit

soliton metrics, having a Euclidean de Rham factor is not an obstruction (see Proposition 7.13) and we will

usually assume Z = [N,N]. The following characterization of two-step nilalgebras was communicated to us

by P. Eberlein and is very useful. See also [Ebe07].

Proposition 7.4. The tuples C = (C1, . . . , Cp) ∈ so(q,R)p which correspond to two-step nilalgebras of

type (p, q) form a Zariski open set in Vpq := so(q,R)p. This Zariski open set consists of p-tuples whose {Ci}

are linearly independent and is denoted by V 0
pq.

Action of GL(q,R)×GL(p,R) on so(q,R)p.

Let GL(q,R) act on so(q,R)p by g · (C1, . . . , Cp) = (gC1gt, . . . , gCpgt). Let GL(p,R) act on so(q,R)p by
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h · (C1, . . . , Cp) = (D1, . . . , Dp), where Dj =
p∑
i=1

hjiC
i. We identify so(q,R)p with so(q,R) ⊗ Rp via the

isomorphism (C1, . . . , Cp) 7→
p∑
i=1

Ci ⊗ ei, where {ei} is the standard basis of Rp.

Consider the following group actions. Let GL(q,R) act on so(q,R) ⊗ Rp by g(M ⊗ v) = (gMgt ⊗ v)

and let GL(p,R) act on so(q,R) ⊗ Rp by h(M ⊗ v) = M ⊗ (hv), where g ∈ GL(q,R), h ∈ GL(p,R),

M ∈ so(q,R), v ∈ Rp and GL(p,R) acts on Rp in the usual way. One immediately see that the above

isomorphism so(q,R)p ' so(q,R)⊗ Rp is equivariant with respect to the actions of GL(q,R) and GL(p,R).

In particular, since the actions of GL(q,R) and GL(p,R) commute on so(q,R)⊗Rp, the actions of GL(q,R)

and GL(p,R) commute on so(q,R)p and we obtain an action of GL(q,R) × GL(p,R) on both spaces that

respects the isomorphism.

Compatible inner product on so(q,R)p. Let <,> denote the canonical inner product on so(q,R)

given by < A,B >= −tr(AB), and extend <,> to so(q,R)p by defining < (C1, . . . , Cp), (D1, . . . , Dp) >=
p∑
i=1

< Ci, Di >. The groupGL(q,R)×GL(p,R) is self-adjoint with respect to<,> andK = O(q,R)×O(p,R)

is the fixed group of the corresponding Cartan involution of GL(q,R)×GL(p,R).

Change of basis formulas. Varying the inner products on V and [N,N] is equivalent to changing the

bases for V and [N,N]; see Proposition 7.12 for justification of varying the inner products on only these

pieces as opposed to all of N. Let {v′1, . . . , v′q, Z ′1, . . . , Z ′p} be another basis of V ⊕ [N,N]. Then there exists

g ∈ GL(V) and h ∈ GL([N,N]) such that

v′i =
∑
j

gijvj Zk =
∑
l

hklZl

How do the structure matrices for these different bases compare? Let C ′ be the structure matrix with respect

to the basis {v′1, . . . , v′q, Z ′1, . . . , Z ′p}. That is, [v′i, v
′
j ] =

∑
k C
′k
ijZ
′
k. Substituting in the old basis written in

terms of the new basis we can relate C and C ′ by

∑
ts

gitgjsC
l
ts =

∑
k

hklC
′k
ij for 1 ≤ l ≤ p, 1 ≤ i, j ≤ q

The left hand side of the equation above is (gClgt)ij . If ht(C ′) = (D1, . . . , Dp) relative to the action of

GL(p,R) on so(q,R)p, then the right hand side of the equation is (Dl)ij . Hence the equation may be written

as g ·C = ht ·C ′ or C ′ = (g, (ht)−1) ·C relative to the action of GL(q,R)×GL(p,R)) on so(q,R)p. This is our

motivation for studying the action of GL(q,R)×GL(p,R) on so(q,R)p. The following is a neat interpretation

of the change of basis formula above.

Proposition 7.5. Isomorphism classes of two-step nilalgebras correspond to GL(q,R)×GLp(R) orbits

in V 0
pq ⊂ so(q,R)p.

81



The group action listed above immediately gives rise to an action of the Lie algebra gl(q,R)× gl(p,R).

Let (X,Y ) ∈ gl(q,R)× gl(p,R) and C = (C1, . . . , Cp) =
∑
k C

k ⊗ ek then

(X,Y ) · C =
∑
k

X(Ck)⊗ ek + Ck ⊗ Y (ek) =
∑
k

(XCk + CkXt)⊗ ek + Ck ⊗ Y ek

We will be interested later in symmetric derivations. Since such a derivation preserves [N,N] and hence V,

we record some information about automorphisms and derivations that respect the decomposition V⊕[N,N].

Proposition 7.6. Let M = (M1,M2) ∈ M(q,R) × M(p,R) act on Rp+q(C) in the usual way: for

1 ≤ i ≤ q, M(ei) = M1(ei) =
∑
j(M1)jiej and for 1 ≤ k ≤ p M(eq+k) = M2(eq+k) =

∑
l(M2)lkeq+l. Then

(i) If M = (M1,M2) ∈ GL(q,R) × GL(p,R) then M is an automorphism of Rp+q(C) if and only if

M t
1 · C = M2 · C, with the action of GL(q,R)×GL(p,R) on so(q,R)p defined above.

(ii) If M = (M1,M2) ∈M(q,R)×M(p,R) then M is a derivation of Rp+q(C) if and only if M t
1 · C =

M2 · C, with the action of gl(q,R)× gl(p,R) on so(q,R)p defined above.

The proof is immediate upon writing out the bracket conditions to be a derivation or an automorphism

in terms of the natural basis {ei} of Rp+q(C).

2. Soliton Metrics on Nilmanifolds

In Chapter 6 we gave the definition of soliton metrics on nilmanifolds. Recall the following proposition

which gives an algebraic characterization of soliton metrics on nilmanifolds.

Theorem 6.5 Let (N, g) be a nilpotent group N with left invariant metric g. Then g is a soliton metric

if and only if

ricg = cI +D

for some c ∈ R and some symmetric D ∈ Der(N).

Recall that this is our working definition of a metric being a soliton metric. A special kind of soliton

metric is the so called optimal metric, defined below. These special metrics were first discovered in [EH96]

and have many strong geometric properties.

Definition 7.7. Let N be a two-step nilmanifold with inner product 〈·, ·〉 on N. Then we say 〈·, ·〉 is

an optimal metric if there exist λ, µ > 0 such that Ric = −λId on V and Ric = µId on [N,N].

Definition 7.8. We will say that C ∈ so(q,R)p has a property if and only if Rp+q(C) has the said

property. For example, we say C is optimal or soliton if Rp+q(C) is, respectively, optimal or soliton. We

say that C admits a property if g · C has that property for some g ∈ GL(q,R)×GL(p,R).
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Criterion for optimal metrics. Recall that if N is a two-step nilpotent Lie algebra of type (p, q),

then a basis B of N is adapted if it contains a basis of [N,N]. If we write B = {v1, . . . , vq, Z1, . . . , Zp},

where {Z1, . . . , Zp} is a basis of [N,N], then B determines structure matrices {C1, . . . , Cp} ⊂ so(q,R) by

the bracket relations [vi, vj ] =
p∑
i=1

CkijZk for 1 ≤ i, j ≤ q.

The next result is Proposition 7.4 of [Ebe07].

Proposition 7.9. Let N be a two-step nilpotent Lie algebra of type (p, q) and let {C1, . . . , Cp} be the

structure matrices of some adapted basis B. Then N admits a metric <,> with optimal Ricci tensor if and

only if the SL(q,R)× SL(p,R) orbit of C = (C1, . . . , Cp) is closed in Vpq = so(q,R)p.

Claim 7.10. Optimal metrics are soliton.

Proof. We need to show that there exists a symmetric derivation D ∈ Der(N) and c ∈ R such that

Ric = cId + D. Consider the map D = d Id on V and D = 2d Id on Z. This is a derivation of any 2-step

nilalgebra. Then using c = −2λ− µ and d = µ+ λ we have the desired result. �

Recall that fixing the bracket structure on N and varying the inner product is equivalent to fixing the

inner product on N and varying the bracket structure. We vary the bracket structure via the change of basis

action, cf. Chapter 6. Recall that N is an Einstein nilradical if N admits a soliton metric. We can specialize

our change of basis action as follows.

Let s be the Lie algebra of a solvable Lie group S. In Heber’s development of the the classification of

(standard) Einstein solvmanifolds, he showed that if s admits an Einstein metric then one can change the

basis in a very special way to achieve an Einstein metric on s, see Proposition 6.8 of [Heb98] for a proof of

the following.

Theorem 7.11. Suppose that N admits a soliton metric. That is, given an inner product <,> on

N, there exists g ∈ GL(N) such that g· <,> is a soliton metric on N. Then we have a decomposition

N = ⊕Ni, where the Ni are the eigenspaces of a symmetric derivation of N. Moreover, we can actually

choose g ∈ GL1 ×GL(N1)× · · · ×GL(Nk) so that g· <,> is a soliton metric.

Now we have a strong motivation to exploit our stratification of two-step nilalgebras. In the two-step

case, Heber’s theorem translates to the following

Proposition 7.12. Suppose a two-step nilalgebra N admits a soliton metric. That is, there exists

A ∈ GL(N) such that A · 〈·, ·〉 = 〈A−1·, A−1·〉 is a soliton metric. Then there exists B ∈ GL(V)×GL([N,N])

such that B · 〈·, ·〉 = 〈B−1·, B−1·〉 is a soliton metric.

This proposition is the motivation for studying the change of basis action on just the V and [N,N] parts.

In what follows we retranslate the soliton condition to the standpoint of the GL(q,R)×GL(p,R) action on

Vpq. Before continuing we make note of the following
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Proposition 7.13. Let N be a two-step nilgroup and let N∗ be defined as above, that is, N = N∗ × E

where E is the Euclidean de Rham factor of N . Then N admits a soliton metric if and only if N∗ does so.

Proof. Recall from theorem 6.5 that g is a soliton metric if and only if Ricg = cId+D for some c ∈ R

and some D ∈ Der(N). Let g be our metric on N and g∗ be the restriction onto N∗. We denote the Ricci

tensor for (N, g) by Ric and the Ricci tensor for (N∗, g∗) by Ric∗. Using Propositions 7.1 & 7.2 observe that

Ric|N∗ = Ric∗

and

Ric|E = 0

Since Ric = cId+D we have D|E = −cId. That is D preserves E and since it is symmetric it also preserves

N∗. Moreover, since D is a derivation of N we see that D∗ = D|N∗ is a derivation of N∗. Hence we have

obtained

Ric∗ = Ric|N∗ = cId+D|N∗ = cId+D∗

where D∗ is a derivation of N∗.

�

We would like to work out the criteria for a metric two-step nilalgebra to be a soliton from the perspective

of the GL(q,R) × GL(p,R) action on Vpq. Since every metric two-step nilalgebra takes the form Rp+q(C)

for some C, it is reasonable to state the requirements from this point of view. This will be worked out in

Section 7.4 but first recall some basic information about algebraic group actions (cf. Chapters 1 and 2).

3. Algebraic Group Actions and Certain Special Representations

We briefly recall some theorems from real Geometric Invariant Theory (GIT). We use GIT as a tool to

study the action of GL(q,R) × GL(p,R) on Vpq to obtain some very general results. See Chapter 2 for a

more thorough introduction to GIT.

For the above representation we are interested in finding the orbits which are either closed or distin-

guished (cf. Definition 5.2); moreover, we wish to show that generic orbits are either closed or distinguished.

The following theorems motivate our treatment of two-step nilsolitons.

Proposition 2.8 Consider an algebraic group G which acts linearly on V . Let G · v be a closed orbit

of maximal dimension, then the set of closed orbits is dense in V . Alternatively we could say, if there exists

a closed generic orbit, then generic orbits are closed, that is, the set of closed orbits contains a nonempty

Zariski open set.
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Proposition 2.30 Consider v ∈ V ⊂ V C. Then G · v is closed if and only if GC · v is closed. Moreover,

since V is Zariski dense in V C, V has a Zariski open set of closed orbits if and only if V C does so.

Theorem 2.21 An orbit G ·v is closed if and only if it contains a minimal vector. Moreover, M∩G · v =

a single K-orbit.

Remark. We show in Section 7.4 that minimal vectors in a particular setting correspond to metrics on

two-step nilmanifolds with nice geometric properties.

Theorem 3.4 Let G be a semi-simple group. If the generic stabilizer is a reductive subgroup, then

generic orbits are closed.

We point out that if we have an open set of points whose stabilizers are reductive not all of these

points necessarily have closed orbits. For more detailed information see [PV94] and Chapters 2-4. A lot

of work was poured into the problem of groups acting linearly on vector spaces, i.e., representations. Since

most representations of complex semi-simple groups have trivial generic stabilizers, lists were developed to

understand the remaining cases. The following is a subset of the tables listed in [KL87, Ela72].

Proposition 7.14. Let 1 ≤ p ≤ 1
2q(q − 1) = D. For all pairs (p, q) other than (1, 2k + 1), (2, 2k +

1), (D − 1, 2k + 1), (D − 2, 2k + 1), the generic stabilizer of SL(q,C)× SL(p,C) acting on
(∧2 Cq

)
⊗ Cp is

reductive. Here generic orbits are closed.

Proof. To verify this fact, one just consults the lists generated in [KL87] and [Ela72]. In fact, for most

of these representations the stabilizer is finite. Knop and Littleman record the groups with representation, up

to outer automorphism and castling transformation (defined below in Lemma 7.15), whose generic stabilizer

is not finite. We also note that the list in [KL87] picks up some cases that were originally missed in [Ela72].

Our goal is to apply Theorem 3.4 by showing that in the cases listed above the generic stabilizer is

reductive. In referencing Tables 2a & 2b of [KL87], we first look for our group type An × Am. Recall

SLn+1 = An. If the group doesn’t show up in the table, then we know that for our representation the

generic stabilizer is finite, which is reductive, and hence generic orbits are closed.

Before continuing with the groups whose generic stabilizer is not finite we need two lemmas.

Lemma 7.15. Let G × SL(p,C) act on V ⊗ Cp where each group acts on the respective factor. Let

n = dimV , assume p < n, and let p′ = n− p. If the generic stabilizer of G× SL(q,C) acting on V ⊗ Cp is

reductive, then the generic stabilizer of G × SL(p′,C) acting on V ∗ ⊗ Cp′ is also reductive. Here V ∗ is the

dual representation. In fact the stabilizers are isomorphic. This transformation is called the castle transform

of G× SL(q,C) acting on V ⊗ Cp.
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Proof of lemma. See Corollary 1 of [Ela72].

Lemma 7.16. Let ρ : G → GL(V ) be a representation of G and let σ ∈ Aut(G). Then the generic

stabilizer of ρ(G) is reductive if and only if the generic stabilizer of ρ ◦ σ(G) is reductive. Moreover, these

stabilizers are isomorphic.

Proof of lemma. The proof is trivial, but this lemma allows us to find groups and representations in

Tables 2a & 2b of [KL87] up to automorphism of the group. We can then apply Theorem 3.4.

Claim 7.17. For the representations given in the proposition above, type (p, q) is equivalent to type

(D− p, q) via automorphisms of the group and castling transformation, where D = 1
2p(p− 1) = dim so(q,R).

Proof of claim. To see this we first construct an outer automorphism σ of G = SL(q,C) so that G acting

on V ∗ is equivalent to σ(G) acting on V . Once we have this automorphism of SL(q,C), we consider the

automorphism σ × id of SL(q,C)× SLD−pC. Now we have the desired composition:

V ⊗ Cp castle transform−→ V ∗ ⊗ CD−p σ×id−→ V ⊗ CD−p

We finish the proof of the claim. For f ∈ V ∗, g · f(∗) = f(g−1∗). Next we construct the automorphism

σ of SLqC. Recall that we have a symmetric, non-degenerate bilinear form B on V =
∧2 Cq = so(q,C).

B(v, w) = tr(v wt) for v, w ∈ so(q,C). For g ∈ SL(q,C), the adjoint with respect to B corresponds with

the usual transpose of g. Define σ ∈ Aut(SL(q,C)) by σ(g) = (gt)−1. Now consider F : V → V ∗ defined by

F (v) = B(v, ·). This is an isomorphism as B is non-degenerate. It is also easy to check the equivariance of

the G-actions, i.e., F (g · v) = σ(g) · F (v).

Now Lemmas 7.15 and 7.16 show that if the generic stabilizer is reductive in the (p, q) case, then it is so

for the (D − p, q) case. This completes the proof of the claim.

To finish the proof of our proposition, we note that Knop-Littelman only record one of (p, q) or (D−p, q).

The groups SL(q,C) × SL(p,C) whose generic stabilizer is not finite correspond to (p, q) = {(2,m) with m

even, (3,4), (3,5), (3,6) }. Elashvili calculated the generic stabilizer for all of these except (3, 6) in [Ela72].

He found these to be reductive. The case (3, 6) is taken care of in [EJ] and has generically reductive

stabilizers. �

The above proposition is of importance because the complexification of so(q,R) is
∧2 Cq and our action

of SL(q,R) complexifies to the representation of SL(q,C) with highest weight ω2.

The remaining exceptional cases also need to be analyzed to understand the metrics that a two-step

nilmanifold can admit. In these cases the only minimal vector is the origin. So we move to projective space

and study the critical points of the moment map instead of just zeros of the moment map. These points

have geometric significance which will be explained below.
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The Moment Map on Projective Space. We recall the definition of the moment map on projective

space and the definition of distinguished points. See Chapter 5 for more details. Since the moment map

m : V → p is homogeneous of degree 2 we can consider the map m : PV → p defined by

m([v]) =
m(v)
|v|2

. This map is also called the moment map.

Definition 5.2 The points v ∈ V and [v] ∈ PV are called distinguished points if [v] ∈ PV is a crit-

ical point of |m|2. If G · [v] contains a distinguished point then we say G · [v] and G ·v are distinguished orbits.

Lemma 7.18. A point v ∈ V is distinguished if and only if m(v) · v = rv for some r ∈ R.

Remark. Note that r ≥ 0 since r|v|2 =< m(v) · v, v >= |m(v)|2.

The proof of the lemma is a simple exercise which we leave to the reader. To understand and find

distinguished vectors, we will resort to using complex groups. Consider G � V and it’s complexification

GC � V C. Let v ∈ V ⊂ V C. It is known that (GC · v)∩V is a finite union of G-orbits (see Proposition 1.15).

The following theorem and corollary give a way of finding distinguished vectors in the real setting.

Theorem 5.7 Let G be a reductive real algebraic group and GC its complexification. Then G · v is

distinguished if and only if GC · v is distinguished. Consequently, if G · v is distinguished, then each of the

other finite orbits that comprise GC · v ∩ V is also distinguished.

Corollary 7.19. If an orbit is Hausdorff open in PV and is distinguished, then generic points in V lie

on distinguished orbits.

Proof. Our group G will have an open orbit in PV if and only if R×G has an open orbit in V . The

property of being a distinguished point is scale invariant, so G · v being a distinguished orbit is equivalent

to R×G · v being a distinguished orbit.

We recall that R×G · v being an open orbit in V is equivalent to C×GC · v being a Zariski open orbit in

V C. To see this, note that the real dimension of the first equals the complex dimension of the second. Finally,

a complex orbit is open in its Zariski closure, which in this case is V C since the complex orbit contains a

Hausdorff open set (cf. [Bor91, Proposition 1.8]). Since the real orbit is distinguished, we have that the

complex orbit is also distinguished by the theorem above. But then C×GC ·v∩V is a union of finitely many

R × G-orbits and is a Zariski open set of V all of whose points lie on R × G-distinguished orbits, again by

Theorem 5.7 and Proposition 1.15. Hence we have found a Zariski open set in V of points whose G-orbits

are distinguished. �
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This corollary is exceptionally useful for finding distinguished orbits. Recall that a Zariski open set in

V C is Hausdorff connected whereas a Zariski open set in V will often have many disconnected Hausdorff

components. Using the theorem above on our real space V , if we can show that all the orbits in just one

Hausdorff component are distinguished, then we are guaranteed that this happens for all the Hausdorff

components. Hence it happens on a Hausdorff dense set. Our application is

Proposition 7.20. In the exceptional cases of (1, 2k+ 1), (2, 2k+ 1), (D− 1, 2k+ 1), (D− 2, 2k+ 1) the

action SL(2k + 1,R)× SL(p,R) � Vp,2k+1 has generic orbits which are distinguished.

See Section 5 for details.

4. Soliton Metrics on the Two-step Metric Algebra Rp+q(C)

In this section we write out the conditions that the metric two-step nilalgebra Rp+q(C) admits a soliton

metric. The following description of solitons may be found in [Ebe07].

The Ric map. We can define a function Ric : Vpq = so(q,R)p → Symm(q,R) × Symm(p,R) that

captures all of the information of the Ricci tensor for Rp+q(C). Here Symm(q,R) is the set of symmetric

q × q matrices. Given C = (C1, . . . , Cp) ∈ Vpq = so(q,R)p we define

Ric(C) = (Ric1(C), Ric2(C))(7.1)

where

Ric1(C) = −2
p∑
k=1

(Ck)2

Ric2(C)ij = −trace(CiCj) = 〈Ci, Cj〉

Remark. The map Ric : Vpq → Symm(q,R) × Symm(p,R) is also the moment map for the action of

GL(q,R)×GL(p,R) on Vpq (see Example 2.28). The following proposition justifies the statement above that

our map Ric : Vpq = so(q,R)p → Symm(q,R) × Symm(p,R) captures the information of the Ricci tensor

for Rp+q(C).

Proposition 7.21. Let (N, 〈, 〉) be a metric two-step nilalgebra of type (p, q). Let B = {v1, . . . , vq, Z1, . . . , Zp}

be an orthonormal adapted basis for N with structure element C. Let Ric denote the ricci (1,1)-tensor of N ,

that is, ric(X,Y ) = 〈Ric(X), Y 〉. Then

(i) Ric leaves [N,N] = span{Z1, . . . , Zp} and [N,N]⊥ = span{v1, . . . , vq} invariant

(ii) Ric restricted to [N,N]⊥ has matrix − 1
4Ric1(C) relative to {v1, . . . , vq}

(iii) Ric restricted to [N,N] has matrix 1
4Ric2(C) relative to {Z1, . . . , Zp}

We want to relate the map Ric to a group action. Writing out the conditions to be a soliton metric

algebra we have
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Proposition 7.22. Rp+q(C) is a Ricci soliton if and only if Ric(C) · C = αC for some α ∈ R. Here

Ric(C) ∈ Symm(q,R) × Symm(p,R) ⊂ M(q,R) ×M(p,R) acts via the Lie algebra action induced by the

group action of GL(q,R)×GL(p,R) on Vpq

Corollary 7.23. Rp+q(C) admits a soliton if and only if SL(q,R) × SL(q,R) · C is a distinguished

orbit if and only if GL(q,R)×GL(p,R) · C is a distinguished orbit.

Proof of the proposition. Suppose first that Ric(C)·C = αC. Then we have Ric1(C)·C+Ric2(C)·

C = αC which gives

−1
4
Ric1(C) · C + 2

α

4
C =

1
4
Ric2(C) · C +

α

4
C

Define D = (D1, D2) ∈ Symm(q)× Symm(p) by D1 = − 1
4Ric1(C) + α

4 Iq and D2 = 1
4Ric2(C) + αIp. Then

D = RicN + α
4 Id by proposition 7.21, where RicN is the Ricci (1,1)-tensor. Since D1(C) = D2(C), D is a

derivation by Proposition 7.6, and thus Rp+q(C) is a soliton.

Conversely, suppose Rp+q(C) is a Ricci soliton and consider the symmetric derivation D = RicN +λId =

(− 1
4Ric1(C) + λId, 1

4Ric2(C) + λId) for some λ; we see that Ric(C) · C = 4λC. �

Proof of the corollary. It was shown above, Example 2.28, that the moment map ofG = GL(q,R)×

GL(p,R) is mG = (m1,m2) = (Ric1, Ric2) = Ric and the moment map for H = SL(q,R) × SL(q,R) is

mH = (Ric1 − λId,Ric2 − µId) where λ(C) = 2|C|2
q and µ(C) = |C|2

p . Also, notice that (r1Id, r2Id) · C =

(2r1 + r2)C. So one has

mH(C) · C = mG(C) · C + (−2λ(C)− µ(C))C

Clearly, C is an eigenvector of mH(C) if and only if it is so for mG(C). Now apply Lemma 7.18. �

Observe that the optimal metrics happen exactly when mH(C) = 0. This is a special case of having a

critical point and our orbit is more than just distinguished, it is actually closed. From this discussion we

obtain the following.

Corollary 7.24. Rp+q(C) has an optimal metric if and only if mH(C) = 0.

More generally we have the following (cf. Proposition 7.4 of [Ebe07]).

Proposition 7.9 Consider a metric two-step nilalgebra N and its associated tuple of structure ma-

trices CB ∈ Vpq for an adapted basis B of N. Then N admits an optimal metric if and only if the orbit

SL(q,R)× SL(q,R) · CB is closed in Vpq = so(q,R)p.

Recall that for a two-step nilpotent Lie algebra of type (p, q) we define D = dim so(q,R) = 1
2q(q−1). Us-

ing Proposition 7.14, and the fact that a real group has a closed orbit if and only if its complexification does so,
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cf. Proposition 2.30, we see that for types (p, q) other than (1, 2k+1), (2, 2k + 1),(D − 1, 2k + 1),(D − 2, 2k + 1)

a generic orbit is closed. That is, a generic tuple of structure matrices corresponds to a two-step Einstein

nilradical.

In the four exceptional cases we will show in Section 5 below that a generic orbit is distinguished but

not closed. We use the main result of Section 5. Putting these together we have our main result.

Theorem 7.25. A generic two-step nilmanifold is an Einstein nilradical. Moreover, the types (p, q)

other than (1, 2k + 1), (2, 2k + 1), (D − 1, 2k + 1), (D − 2, 2k + 1) generically admit optimal metrics.

Remark. It is very important to note that when we say generic we mean it in the Hausdorff sense. That

is, every two-step nilalgebra is the limit of algebras which admit a soliton metric.

Dimension of the moduli spaces. We use the results that are known for the representations of interest

to us to calculate the dimension of moduli of Einstein metrics on rank 1 solvmanifolds whose nilradical is

two-step. This question was raised in [Heb98]. Here he gave computations that calculated the dimension

of the moduli space near the rank 1 symmetric spaces.

Computing the moduli of Einstein metrics on rank 1 solvmanifolds is equivalent to computing the moduli

of nilsolitons. In the two-step case, we can give a complete answer near the generic algebras. The dimension of

the moduli is the dimension of the open set of smooth points. Since M/K ' V//G, cf. [RS90], the dimension

of this open set = dimVpq −dim generic orbit = dimVpq −dimH + dimHv, where H = SL(q,R)×SL(p,R)

and Hv is the generic stabilizer. This finds the dimension of the moduli space up to isometry, but then one

needs to subtract 1 more to know the dimension up to isometry and scaling.

Since hC
v = (hv)C the dimension of our real moduli space equals the complex dimension of the complex

moduli space V C
pq//SL(q,C)×SL(p,C). All of the information needed to compute this is contained in the lists

of Elashvili. Additionally this information was computed by Knop-Littlemann in [KL87]. The following

table lists the dimension of the moduli of nilsolitons up to scaling and isometry. Note, the dimension of

moduli will be the same for (p, q) and the dual (D − p, q). The information listed below appears also in

Propositions A and B of [Ebe03] since these are also the dimensions of the spaces X(p, q) of isomorphism

classes of two-step nilpotent Lie algebras of type (p, q).
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Dimension of Moduli about generic points

(p, q) and (D − p, q) dimension

(1, q) 0

(2, 4) 0

(2, 2k), k ≥ 3 k-3

(2, 2k + 1) 0

(3, 4) 0

(3, 5) 0

(3, 6) 2

(D, q) 0

all other (p, q) p 1
2q(q − 1)− (q2 + p2 − 2)− 1

5. The Exceptional Cases

We derive the results for the four exceptional cases here. In each of these cases the group SL(q,R) ×

SL(p,R) will have an open orbit in PVpq which says that we have an open set in Vpq of points whose orbits

are distinguished, cf. Corollary 7.19.

Proposition 7.26. If SL(q,R)×SL(p,R) has an open orbit in PVpq then SL(q,R)×SL(D− p,R) has

an open orbit in PVD−p,q.

Before beginning the the proof we need the following lemma.

Lemma 7.27. The action of SL(q,R) on Vpq induces a natural action on the Grassmann Gr(p,D). The

group SL(q,R) has an open orbit in Gr(p,D) if and only if SL(q,R)×GL(p,R) has an open orbit in Vpq.

Proof of the lemma. Consider W ∈ Gr(p,D) whose SL(q,R) orbit is open and take a basis {Ci} of

W . Now define v =
∑
Ci ⊗ ei ∈ Vpq = so(q,R)⊗Rp, where {ei} is the usual basis of Rp. We will show that

the SL(q,R)-orbit of W corresponds to the SL(q,R)×GL(p,R) orbit of v.

Consider the neighborhood of v ∈ Vpq which consists of u =
∑
Di⊗ ei such that the Di span a subspace

which is in the SL(q,R) orbit of W . (Note: any vector w ∈ Vpq can be written in the form
∑
Ei ⊗ ei

where Ei is a skew-symmetric matrix and ei is the standard basis of Rp .) This neighborhood is open as

SL(q,R) ·W is open in Gr(p,D). Now take g ∈ SL(q,R) so that {g ·Ci} and {Di} have the same span. As

these are two bases of the same vector space there exists h ∈ GL(p,R) such that h(g · Ci) = Di. But this

says (g, h) ·
∑
Ci⊗ ei =

∑
Di⊗ ei. Hence SL(q,R)×GL(p,R) · v is open if SL(q,R) ·W is open. The other

direction is trivial. �

Proof of the proposition. It is easy to check that if g(W ) = W ∗ ∈ Gr(p,D), then σ(g)(W⊥) =

(W ∗)⊥ ∈ Gr(D − p,D) where σ(g) = (gt)−1. Hence if SL(q,R) ·W is open in Gr(p,D) then SL(q,R) ·W⊥
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is open in Gr(D − p,D). The orbits of GL(p,R) in PVpq are the same as the orbits of G′ = {g ∈ GL(p,R) :

det g = 1 or − 1}. Since SL(q,R)× SL(p,R) has index two in SL(q,R)×G′ the proposition follows from

the Lemma. �

We now work on each of the exceptional cases. Our goal is to construct a generic soliton, aka distinguished

point, and argue why we must have an open set of distinguished orbits.

Case (1, 2k + 1): Consider the matrix A =



0 1

−1 0
. . .

0 1

−1 0

0


. This clearly has an open or-

bit in so(2k + 1,R) = so(2k + 1,R) ⊗ R1 as any generic skew-symmetric matrix can be conjugated to this

one. Moreover, it is easy to see that this matrix satisfies the soliton condition Ric(C)·C = rC for some r ∈ R.

Case (D− 1, 2k+ 1): In this case we construct C ∈ so(2k+ 1,R)D−1 whose span will be orthogonal to

the soliton A from the (1, 2k + 1) case. First we tackle the issue of genericity.

Since SL(2k+1,R)×SL(1,R)·[A] is an open orbit in PV1,2k+1 we have that SL(2k+1,R)×SLD−1R·[C]

is an open orbit in PVD−1,2k+1, see Proposition 7.26 and its proof. Thus by Corollary 7.19 we see that there

exists an open set of VD−1,2k+1 whose points lie on distinguished orbits, i.e., we have an open set of algebras

which admit soliton metrics. Next we construct the desired C ∈ VD−1,2k+1.

Some notation. We denote the usual basis vectors of so(2k+ 1,R) by vij = Eij −Eji, for i < j, where

Eij is the matrix with a 1 in the ij-th position and zeros elsewhere. The space so(2k,R) sits naturally in

so(2k + 1,R) as so(2k,R) = span− < vij > such that j 6= 2k + 1; i.e., the upper left 2k × 2k block as in the

matrix A above. It is easier to describe C = (C1, . . . , CD−1) by splitting the Ci into two sets. The first set

of 2k2 − k − 1 elements will consist of an orthogonal basis of so(2k,R) ∩ A⊥, all of whose elements are of

length |A| =
√

2k, where A is defined in the case above. At first this may seem mysterious; however, we will

show that the properties given for Set 1 are enough to compute Ric(C) with the second set defined below.

The second set of Ci (with 2k-many elements) will consist of {
√
a vi,2k+1}, 1 ≤ i ≤ 2k. In matrix form

vi,2k+1 =

(
ei

−eti 0

)

where ei is the column vector with 1 in the i-th position and zeros elsewhere.

We claim that a = 2k2−1
2k yields a soliton. That is Ric(C) · C = rC for some r ∈ R with this choice

of a. We compute Ric2(C) first. Recall that Ric2(C) is defined by (Ric2(C))ij = −tr(CiCj). Fortunately

we constructed Set 1 and Set 2 to be orthogonal to each other. Also observe that the Ci in Set 1 are all
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orthogonal and of length |A| =
√

2k and the Ci in Set 2 are all orthogonal and of length
√

2a. Thus Ric2(C)

has the convenient form

Ric2(C) = diag{2k, . . . , 2k︸ ︷︷ ︸
set1

, 2a, . . . , 2a︸ ︷︷ ︸
set2

}(7.2)

Next we compute Ric1(C) = −2
∑
C2
i by computing the sum of squares first over Set 1, then over Set 2,

and then adding. Before we compute −
∑
set1

C2
i , we make the following very useful observation.

Lemma 7.28. Let {D1, . . . , Dp} ⊂ so(q,R) be an orthogonal set of vectors, each with length |Di| = d and

let W = span < Di >. If {E1, . . . , Ep} ⊂ so(q,R) is any other orthogonal basis of W whose elements have

length d, then
∑
D2
i =

∑
E2
i .

Proof. This follows immediately from the fact that kRic1(C)k−1 = Ric1(C) for k ∈ SO(p,R) and

C ∈ Vpq. �

We apply this lemma to W = so(2k,R) ⊂ so(2k+1,R). The Ci in Set 1 together with A span so(2k,R);

additionally, these vectors have |Ci|2 = |A|2 = 2k. Note that so(2k,R) has {vij : 1 ≤ i < j ≤ 2k} as a basis

and |vij |2 = 2 for all i, j. Applying the lemma we have

−
∑
set1

C2
i −A2 = −

∑
1≤i<j≤2k

k vij
2 = k


(2k − 1)Id2k

0


Adding A2 we have

−
∑
set1

C2
i = diag{2k2 − k, . . . , 2k2 − k, 0} − diag{1, . . . , 1, 0}

= (2k2 − k − 1)diag{1, . . . , 1, 0}

Computing the sum of squares over Set 2 is straight forward and we obtain

−
∑
set2

C2
i = a diag{1, . . . , 1, 2k}

which gives

Ric1(C) = −2
∑

C2
i = 2


(2k2 − k − 1 + a)Id2k

2ka


Putting all of our computations together we can easily compute the i-th component of Ric(C) · C =

Ric1(C) · C + Ric2(C) · C. Using Equation (7.2) we see that Ric2(C) is a diagonal matrix and we have
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(Ric(C) ·C)i = Ric1(C) ·Ci + |Ci|2Ci, where Ric1(C) acts via Ric1(C) ·Ci = Ric1(C)Ci +CiRic1(C). For

Ci in Set 1 and Cj in Set 2 we have

(Ric(C) · C)i = {2 · 2(2k2 − k − 1 + a) + 2k} Ci

(Ric(C) · C)j = {(2(2k2 − k − 1 + a) + 4ak) + 2a} Cj

We have a soliton when Ric(C) ·C = rC, for some r ∈ R. This happens when the above two coefficients are

equal and that is precisely when a = 2k2−1
2k .

Case (2, 2k + 1): We construct C ∈ so(2k + 1,R)2 which has an open SL(2k + 1,R) × SL(2,R) orbit

and which makes R2+(2k+1)(C) a soliton. Then by Corollary 7.19 we know that we have a Zariski open set

of the vector space which consists of distinguished orbits. Consider the vector C = (C1, C2) defined by

C1 =



0 a1

−a1 0

0 a2

−a2 0
. . .

0 ak

−ak 0

0



, C2 =



0

0 ak

−ak 0
. . .

0 a2

−a2 0

0 a1

−a1 0


with ai =

√
k + 1− i. This gives a vector which is distinguished and whose orbit is open in the vector space.

We omit the details that the group orbit is open. In fact, for any pair of matrices of the above form, if ai 6= 0

for all i, then the orbit is open.

These matrices are orthogonal with the same length a = (2
∑
a2
i )

1/2 = (k(k + 1))1/2. Hence Ric2(C) =

a2I2. To show that C defines a soliton one just needs to verify that Ric1(C) = −2(C2
1 +C2

2 ) acts like a multiple

of the identity. From the choice of the {ai} we obtain −C2
1−C2

2 = diag{k, k+1, k, k+1, k . . . , k+1, k}. Notice

the terms along this diagonal alternate between k and k+1. As before we define vij = Eij−Eji ∈ so(2k+1,R)

for i < j. Thus for any vi,i+1 we have Ric1(C) · vi,i+1 = 2(2k + 1)vi,i+1. Since our chosen Ci have such a

special form, i.e., they lie in the span of {vi,i+1}, we have Ric1(C) · C = 2(2k + 1)C.

Case (D − 2, 2k + 1): Let A1, A2 denote the Ci given above in the previous case (2, 2k + 1). We will

construct C ∈ so(2k+1,R)D−2 which makes R(D−2)+2k+1(C) a soliton and so that span < C >⊥ A1, A2. In

this way we can guarantee that generic orbits are distinguished by applying Corollary 7.19 and Proposition

7.26. The components of C will be broken up into 4 sets. In what follows we denote the usual basis for

so(2k + 1,R) by vij = Eij − Eji, i < j.
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Set 1 consists of an orthogonal basis of {span < vi,i+1 >} ∩ {span < A1, A2 >}⊥ which have length

= |Ai| =
√
k(k + 1).

Set 2 consists of the vectors
√
a vij , where both i, j are odd.

Set 3 consists of the vectors
√
b vij , where both i, j are even.

Set 4 consists of the vectors
√
c vij , where i, j have different parity and j 6= i+ 1.

These four sets constitute a basis of span < A1, A2 >
⊥ and so there are precisely D − 2 of these Ci.

We claim that the above yields a soliton precisely when a = k3+k2−1
2k , b = k3+k2+1

2k , c = k(k+1)
2 = |Ai|2

2 .

Note, a, b, c > 0 as needed. To see this, first observe that Ric2(C) is again a diagonal matrix by construction

since the vectors {vij} are orthogonal of length
√

2. We show how to compute Ric1(C) and leave the

remaining details to the reader.

In order to compute Ric1(C) we calculate −
∑
C2
i . We will do this for Ci in the different sets, then

finish by describing what Ric1(C) should look like. To calculate −
∑
set1

C2
i we observe that Set 1 along with

A1, A2 span the same space as {vi,i+1}. Using Lemma 7.28 we have

−
∑
set1

C2
i =

k(k + 1)
2

(−
∑

v2
i,i+1)− (−A2

1 −A2
2)

=
k(k + 1)

2



1

2

2
. . .

2

1


−



k

k + 1

k

. . .

k + 1

k


= diag{k(k − 1)

2
, k2 − 1, k2, . . . , k2 − 1,

k(k − 1)
2

}

−
∑
set2

C2
i = ak diag{1, 0, 1, . . . , 0, 1}

−
∑
set3

C2
i = b(k − 1) diag{0, 1, 0, . . . , 1, 0}

−
∑
set4

C2
i = c(k − 1) diag{1, 1, 0, 1, . . . , 0, 1, 0, 1, 1}

+c(k − 2) diag{0, 0, 1, 0, . . . , 1, 0, 1, 0, 0}

where, in the equation for Set 4, we have a) the first diagonal matrix begins and ends with a pair of 1’s and

alternates in between, and b) the second diagonal matrix begins and ends with a pair of zeros and alternates

in between.
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Once all the computations are made Ric1(C) = diag{r1, r2, r1, . . . , r2, r1}. Because Ric1(C) and the

Ci have such special forms, the calculations are manageable and we readily see that we have constructed a

soliton which is also generic. �

In showing that generic orbits are distinguished for these four exception cases, we really found solitons

in the cases (1, 2k+1) and (2, 2k+1) then showed that they had “dual” algebras which also admitted soliton

metrics. Recall that two algebras N1,N2 are dual if their structure matrices CNi
satisfy

span < CN1 >⊥ span < CN2 >

It is a fact that the dual of an optimal matrix is optimal. This fact is easy to deduce knowing that so(q,R)

has an orthonormal basis {Ci}, under the negative Killing form, such that
∑
C2
i = −rId for some r > 0.

We would be very interested in an answer to the following question.

Question 7.29. Is the dual of an Einstein nilradical an Einstein nilradical?
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CHAPTER 8

Constructing new Einstein and Non-Einstein Nilradicals

As the previous chapter demonstrates, finding nilpotent Lie groups that do not admit soliton metrics

is a very subtle problem. There it is shown that generic two-step nilalgebras are Einstein nilradicals. In

this chapter we construct a new family of examples of non-Einstein nilradicals (see Proposition 8.10) that

was not previously known; moreover, we give a general technique for building new Einstein nilradicals from

‘smaller’ ones (see Proposition 8.4 and Theorem 8.5). This new family of non-Einstein nilradicals which is

constructed also answers some questions that were posed to me by J. Lauret. I would like to thank him for

some very useful conversations.

In this chapter we will construct tuples C ∈ so(q,R) such that Ci = j(Zi) where {Zi} is an adapted basis

of Z ⊂ N = V ⊕ Z instead of being an adapted basis of [N,N] ⊂ N = V ′ ⊕ [N,N]. All the previous results

from Chapter 7 hold when changing to this perspective. Although this technical change is not necessary, it

is preferred in this chapter.

1. An Amalgamated Lie Algebra

Consider two metric two-step nilpotent Lie algebras N1 = V1⊕Z and N2 = V2⊕Z whose centers are the

same dimension. One can construct a new nilpotent Lie algebra N = V1 ⊕ V2 ⊕ Z so that the Vi commute.

To do this, one must identify the two different centers via a vector space isomorphism; this choice might

change the isomorphism type of the resulting amalgamated Lie algebra.

In addition to constructing a bracket on N, we simultaneously endow N with a choice of metric. This

construction is dependent on the identification (isometry) of the centers of N1 and N2; equivalently, the

construction is dependent on a choice of orthonormal basis of Z. By hypothesis, the inner product on the

center of N1 is the same as the inner product on the center of N2. Endow N = V1 ⊕ V2 ⊕ Z with the inner

product such that this is an orthogonal direct sum and when restricted to each piece corresponds to the

original inner products. We define [·, ·] on N using the following set of relations

[V1,V2] = 0

〈[vi, wi], Z〉 = 〈ji(Z)vi, wi〉 for Z ∈ Z and vi, wi ∈ Vi, i = 1, 2
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where ji is the j-map for the metric Lie algebra Ni, i = 1, 2. Equivalently, the bracket above could be defined

via the j-map by

j(Z) =

j1(Z)

j2(Z)


Here j(Z) is a block matrix relative to a basis which respects the orthogonal direct sum V1 ⊕ V2. This

construction is very natural and from the perspective of the j-map says that j(Z) preserves the subspaces

Vi for all Z ∈ Z.

Remark. If the adapted basis contains a basis of Z (rather than [N,N]), then the structure matrices

C1, . . . , Cp may not be linearly independent. For example, this will happen when we have a nontrivial

Euclidean de Rham factor.

Question 8.1. Consider N = V1 ⊕ V2 ⊕ Z. Is N an Einstein nilalgebra if and only if both N1 and N2

are so?

We give a full negative answer to this question. There do exist Ni which are Einstein nilradicals but N

is not (see Proposition 8.10). Conversely, there exist an N1 which is a non-Einstein nilradical and an N2

which is an Einstein nilradical such that the constructed N is an Einstein nilradical (see Example 8.12).

2. Concatenation of Structure Matrices

Let A = (A1, . . . , Aq1) ∈ so(q1,R)p and B = (B1, . . . , Bq2) ∈ so(q2,R)p be structure matrices associated

to N1 and N2, where qi = dimVi. The N constructed above corresponds to the structure matrix C ∈ so(q,R)p

where q = q1 + q2 and

Ci =

Ai
Bi


We call this process concatenation. Denote this process of concatenation by C = A +c B. This definition

depends on more than the isomorphism classes of N1 and N2, it depends on the choice of adapted bases to

produce the structure matrices.

Definition 8.2. Let C ∈ so(q,R)p be a distinguished point of the SL(q,R) × SL(p,R) action (cf.

Definition 5.2). We will say that C is SL(p,R)-minimal if m2(C) = 0 where m2 is the moment map for the

SL(p,R) action (cf. Example 2.28).

Remark. Equivalently, C = (C1, . . . , Cp) is SL(p,R)-minimal if the Ci are mutually orthogonal and all

of the same length. There do exist distinguished points which are not SL(p,R)-minimal. See Proposition

8.10 with k = 3. Moreover, this example shows the stark difference between distinguished and minimal

points. That is, if a point is minimal for G1×G2 then it is so for each Gi on its own. However, an analogous

result for distinguished points is not true.
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Lemma 8.3. Let A be a distinguished SL(q,R)× SL(p,R) point which is SL(p,R)-minimal. Then A is

SL(q,R)-distinguished.

Remark. The proof actually only requires A to be SL(p,R) distinguished; however, we only need the

result for the case of SL(p,R)-minimal.

Proof. Recall that the moment map for the SL(q,R) × SL(p,R) action is m = m1 + m2 where m1

is the moment map for SL(q,R) and m2 is the moment map for SL(p,R) (see Proposition 2.26). Then

A being distinguished is equivalent to m(A) · A = aA for some a ∈ R. But if m2(A) · A = a2A, then

m1(A) ·A = (a− a2)A. That is, A is SL(q,R)-distinguished. �

Proposition 8.4. Let A ∈ so(q1,R)p, B ∈ so(q2,R)p, and C = A +c B ∈ so(q1 + q2,R)p be the

concatenation of A and B. If A, B are distinguished and SL(p,R)-minimal then so is C, after rescaling B.

Remark. This gives a natural way of constructing new soliton algebras from smaller pieces.

Proof. We first observe that A being SL(p,R)-minimal is equivalent to |Ai| = |Aj | and Ai ⊥ Aj

for all i, j. Thus, if A and B are SL(p,R)-minimal then the concatenation C automatically is so, since

|Ci|2 = |Ai|2 + |Bi|2 and < Ci, Cj >=< Ai, Aj > + < Bi, Bj >.

By the lemma above, since A and B are SL(p,R)-minimal, we see that m1(A) ·A = λaA and m1(B) =

λbB. Note that λa, λb ≥ 0 by Lemma 7.18. By rescaling B, we may assume that λa = λb = λ ∈ R since m1

is a degree 2 homogeneous polynomial and λa, λb ≥ 0. Let C =

A
B

 be the concatenation of A and B.

Then

m1(C) = −2
∑

C2
i =

−2
∑
A2
i

−2
∑
B2
i

 =

m1(A)

m1(B)


and since we rescaled our initial pair, we see that

m1(C) · C = m1(C)C + Cm1(C) =

m1(A) ·A

m1(B) ·B

 = λC

Since the components of C are orthogonal and of the same length, we see that m2(C) = 0. Thus,

m(C) · C = λC. �

Theorem 8.5. Consider q1 ≤ q2, D = 1
2q2(q2 − 1), and 1 ≤ p ≤ D with p 6= D − 1, D − 2. Let N1 and

N2 be generic nilsolitons of types (q1, p) and (q2, p), respectively. Then the concatenation N = V1 ⊕ V2 ⊕ Z

is also a nilsoliton.

Proof. See Chapter 7 for details on nilsolitons of type (p, q). By generic soliton we mean a soliton

in the isomorphism class of a generic algebra. Observe for the ‘non-exceptional’ types (p, q) that generic
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algebras admit optimal metrics by Theorem 7.25, and optimal metrics are necessarily SL(p,R)-minimal. For

the exceptional types (p, q) that satisfy the given constraints on p, generic algebras admit solitons which are

SL(p,R)-minimal; see the constructions in Chapter 7 of the exceptional cases (1,2k+1) and (2,2k+1). Now

apply the proposition above. �

Remark. See Corollary 8.7 for a worthwhile application. Moreover, this theorem speaks only to the

generic setting. We show by construction that not all concatenations of solitons can admit a soliton metric.

The following theorem will be very useful in the study of algebras of type (2, 2k + 1) but is very valuable in

its own right.

We are interested in tuples C which are the concatenation of n-many tuples A1, . . . , An; that is, each

Ci =


A1
i

. . .

Ani

. Equivalently, all the Ci ∈ so(q,R) simultaneously preserve the same subspaces of Rq.

Let V = so(q,R)p and W be the subspace of block diagonal tuples of matrices


so(q1,R)

. . .

so(qn,R)


p

,

where q = q1 + · · ·+ qn.

Theorem 8.6. Suppose C ∈W admits a soliton metric, that is, there exists g ∈ G = GL(q,R)×GL(p,R)

such that g · C is a soliton. Then there exists h ∈ G such that h · C ∈W is a soliton.

Recall that if C ∈ so(q,R)p is a point which is distinguished and defines a type(p, q) algebra then C is

a soliton; that is, Rp+q(C) is a soliton metric nilalgebra.

Proof. This proof relies on the main result of Chapter 5 as follows. Let C be a tuple which admits

a soliton metric. Let ϕt(C) denote the negative gradient flow of the norm squared of the moment map for

G = GL(q,R) × GL(p,R) starting at C, and let ω(C) denote the ω-limit set of φt(C). It is known that

ω(C) consists of soliton metrics as this set consists of fixed points of the negative gradient flow; see the

remark following Definition 5.5, Lemma 7.18, and Proposition 7.22. However, since C admits a soliton by

hypothesis, it follows from Theorem 5.10 that ω(C) ⊂ G · C.

We assert that −grad |m|2 is tangent to W at all points of W . Note that −grad |m|2(C) = −4m(C) ·C

by Lemma 5.4 and m(C) ∈ gl(q1,R)×· · ·×gl(qn,R)×gl(p,R) for all C ∈W by inspection. Since GL(q1,R)×

· · · ×GL(qn,R)×GL(p,R) leaves W invariant the assertion follows.

Consider [C] ∈ PW ⊂ PV . We have shown that ϕt[C] ⊂ GL(q1,R)×· · ·×GL(qn,R)×GL(p,R)·[C] ⊂ PW

for all t as the flow is always tangent to the submanifold GL(q1,R) × · · · × GL(qn,R) × GL(p,R) · [C] ⊂

PW ⊂ PV . Therefore, ω[C] ⊂ PW ∩G · [C] as was to be shown. �
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Remark. It is not clear whether or not the algebra h ·C above must actually be in the GL(q1,R)× · · · ×

GL(qn,R) × GL(p,R) orbit of C. I have some partial results towards this question and plan to work on it

more in the future.

3. Algebras of Type (2, q)

When q = 2k + 1 the orbits of GL(q,R)×GL(2,R) are open in V = so(q,R)2. Hence generically there

are only finitely many isomorphism classes of type (2, q) algebras, possibly just one. We have shown that

such algebras are Einstein nilradical(s), see Section 7.5. From this, we can build more Einstein nilradicals

from the work in the previous section. Recall that a two-step nilpotent Lie algebra N is called an Einstein

nilradical if N admits a soliton metric (see Definition 6.6).

Corollary 8.7. Most algebras of type (2, 2k+1) are Einstein nilradicals. More precisely, write 2k+1 =

(2l + 1) + q for positive integers l, q with q ≥ 4. Consider a block decomposition of structure matrices

C = A +c B, where A ∈ so(2l + 1,R)2 and B ∈ so(q,R)2. For generic choices of A,B the constructed

C = A+c B ∈ so(2k + 1)2 admits a soliton metric.

Remark. Warning! This does not necessarily hold for the other (p, q) types. For the other types, one

would have to show that the Zariski open set O of ‘generic’ algebras in so(q,R)p constructed in Chapter

7 actually intersects this vector subspace W of block matrices. However, a priori it could happen that

W ⊂ so(q,R)p −O.

Here we show that W ∩ O is nonempty by showing that for a generic element A of so(2l + 1,R)2 the

orbits GL(2l + 1,R)×GL(2,R) ·A and GL(2l + 1,R) ·A are equal. This statement is false for p ≥ 3.

Additionally, this corollary shows that the word most carries much more weight than just the existence

of a Zariski open set in so(2k + 1,R)2. From this one can construct/guarantee the existence of moduli of

Einstein nilradicals of type (2, 2k + 1), as opposed to the finite set of ‘generic’ algebras of type (2, 2k + 1).

See Example 8.9. Before proving the corollary, we state the following lemma.

Lemma 8.8. Consider the groups G = GL(2l + 1,R) × GL(2,R) and H = GL(2l + 1,R) acting on

so(2l + 1,R)2. For generic A ∈ so(2l + 1,R)2 we have H ·A = G ·A

Proof of the Lemma. It is a fact, which we omit the proof of, that generic H-orbits in so(2l+ 1,R)2

are open. The proof of this fact amounts to calculating the dimension of the stabilizer at a specific point

A ∈ so(2l + 1,R)2 to see that dimHA = dimH − dim so(2l + 1,R)2. The A that I used is

A =




0 1
−1 0

. . .
0 1
−1 0

0

 ,


0
0 1
−1 0

. . .
0 1
−1 0




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If O = {A ∈ so(2l + 1,R)2 : H(A) is open in so(2l + 1,R)2}, then O is invariant under G since H is

normal in G. If A ∈ O, then G(A) is a union of open H orbits, and hence G(A) = H(A) since G is connected.

�

Proof of the Corollary. Consider C = A +c B ∈ so(2k + 1,R)2 where A ∈ so(2l + 1,R)2 and

B ∈ so(q,R)2 are generic. As A is generic the lemma above states that GL(2l+1,R)×GL(2,R)·A = GL(2l+

1,R) ·A. Moreover, the example constructed in Section 7.5 shows there exists g ∈ GL(2l+ 1,R)×GL(2,R)

such that g ·A is soliton and SL(2,R) minimal. Thus there exists g ∈ GL(2l+ 1,R) such that g ·A is soliton

and SL(2,R) minimal.

Now consider B ∈ so(q,R)2, where q+2l+1 = 2k+1 and q ≥ 4. As B is generic, by Theorem 7.25 there

exists h ∈ GL(q,R)×GL(2,R) such that h ·B is optimal and in particular SL(2,R)-minimal. Hence we have

(g, h) ∈ GL(2l + 1,R)×GL(q,R)×GL(2,R) ⊂ GL(2k+1,R)×GL(2,R) such that (g, h)·C = (g ·A)+c (h·B)

is a soliton by Proposition 8.4, after rescaling h ·B. �

Example 8.9. Let A ∈ so(2l + 1,R)2 be a generic Einstein nilradical and consider all B ∈ so(2k,R)2

which are Einstein nilradicals. For fixed A the dimension of this moduli space of such B is k−3 (see Section

7.4). As A and B vary the set of C = A+c B consists of Einstein nilradicals and the moduli of such C has

dimension k − 3.

Remark. We omit the proof of the claimed results above. To prove the Example, one can reduce to the

case of A being a fixed soliton and then show that A+c B and A+c B
′ are isomorphic if and only if B and

B′ are isomorphic when B,B′ are generic. Genericity of B,B′ might not be required, however we do not

know of a simple proof without using such a fact.

In addition to constructing moduli of Einstein nilradicals of type (2, 2k + 1), we can also construct

some nilalgebras which are non-Einstein (in fact, we can construct moduli of such nilalgebras); that is, they

cannot possibly admit an invariant Ricci soliton metric. To do this we will consider structure matrices

based on Z instead of based on [N,N]. That is, our structure matrices are {j(Z)|Z ∈ Z}. We note that if

e = dim Z − dim [N,N], then e is the dimension of the Euclidean de Rham factor of N for any choice of

metric <,>. See Proposition 2.7 of [Ebe94] and Proposition 1.3 of [Ebe03].

Take B to be (generic) of type (2,3) with no Euclidean de Rham factor (i.e., Z = [N,N], which is

equivalent to the linear independence of {B1, B2}) and A = (A1, A2) ∈ so(2k,R)2 such that A1 and A2 are

linearly dependent and one of them is nonsingular. That is, A is a set of structure matrices, based on Z

instead of [N,N], corresponding to an algebra whose center has dimension 2 and commutator has dimension

1; i.e., the algebra has a 1-dimensional Euclidean de Rham factor. We will classify which of these A +c B

are Einstein nilradicals. Note that A+cB will have no Euclidean de Rham factor since {C1, C2} are linearly

independent, which follows from the fact that {B1, B2} are linearly independent.
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Proposition 8.10. Let C = A +c B be the concatenation of A, B given above. Then the two-step

nilalgebra associated to C is an Einstein nilradical only for k ≤ 3.

Remark. The proof will show that for k ≤ 3 if D = g · C is a soliton for some g ∈ G = GL(2k + 3,R)×

GL(2,R), then D = (D1, D2) may be chosen to have the following form:

D1 =

0

F1

, F1 =


0 a

−a 0

0



D2 =

E2

F2

, E2 = diag{λ Id2, . . . , λ Id2} (k-many blocks), and F2 =


0

0 d

−d 0


The constants a, d, λ are all positive and related as follows:

k = 1 a = d
√

2 λ = a

k = 2 a = 2d λ = a
√

3
2

k = 3 a = d
√

10 λ = d
√

6
Conversely, a routine computation shows that the elements above are solitons. This classification also

shows that all concatenated C that admit a soliton lie on a single G orbit, up to scaling by constants.

Before proving the proposition, we need a lemma that makes the above theorem slightly stronger for the

particular C chosen.

Lemma 8.11. Let C be the concatenation of A,B as above. Let W ⊂ so(2k + 3,R)2 be the subspace of

block matrices of the type of C. If C admits a soliton D ∈ GL(2k + 3,R)×GL(2,R) ·C ∩W then D can be

chosen with the following additional property: D =

E
F

, where E satisfies E1 = 0.

Proof of the lemma. To construct the desired soliton D with said properties, we will analyze the

negative gradient flow of the norm squared of the moment map corresponding to the group GL(2k+ 3,R)×

GL(2,R) acting on so(2k + 3,R)2.

It will be useful to recall some properties of the action of GL(2,R) = {Id}×GL(2,R) ⊂ GL(2k+3,R)×

GL(2,R) on so(2k + 3,R)2. If R = (R1, R2) ∈ so(2k + 3,R)2 and g ∈ GL(2,R), then g(R) = S = (S1, S2),

where span{R1, R2} = span{S1, S2} ⊂ so(2k + 3,R). In particular, GL(2,R) leaves W invariant.

As in Theorem 8.6 above, the negative gradient flow starting at [C] ∈ PW lies in the orbit GL(2k,R)×

GL(3,R)×GL(2,R) · [C] ⊂ PW . Pick a sequence gn ∈ GL(2k,R)×GL(3,R)×GL(2,R) such that gn · [C] =

ϕtn [C] for some tn →∞, where ϕt denotes the negative gradient flow. Take D = lim gn ·C. As in Theorem

8.6 above, D is a soliton.
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Write gn · C =

En
Fn

. We claim that there exists a sequence kn ∈ SO(2,R) such that kngn · C =Gn
Hn

 with G1 = 0. That is, we can change via the compact group SO(2,R) so that the ‘E1-slot’ = 0.

Before showing the existence of such kn we will use it to finish the proof of the lemma.

As SO(2,R) is compact, we may assume kn → k ∈ SO(2,R), by passing to a subsequence if necessary.

We see that kngn · [C] → k[D] ∈ PW and since for each n the ‘E1-slot’ = 0, this holds in the limit as well.

Moreover, kD ∈ W is soliton as the set of solitons is K-invariant where K = O(2k + 3,R) × O(2,R) (cf.

Section 7.1). Thus we have constructed a soliton with the desired properties.

To finish the proof of the lemma, we must show the existence of such a kn ∈ SO(2,R). Observe that

En = (En1 , E
n
2 ) is in the GL(2k,R)×GL(2,R)-orbit of A = (A1, A2). Since A1 and A2 are linearly dependent

they must be multiples of each other. Thus En1 and En2 are multiples of each other. To find the desired

kn =

 cos θn sin θn

− sin θn cos θn

, one needs to find θn such that cos θn En1 + sin θn En2 = 0. Clearly such θn exists

and the lemma is proven. �

Proof of the proposition. Suppose that D = g · C is a soliton, we show k ≤ 3.

The lemma above tells us that our soliton D ∈ GL(2k + 3,R) × GL(2,R) · C ∩W can be chosen with

a very special form; that is, we may assume that D =

E
F

 is our soliton where E ∈ so(2k,R)2

with E1 = 0 and E2 has no kernel (explained below). We will make heavy use of this special form D =
 0

F1

 ,

E2

F2

 to show k ≤ 3.

To see that E2 has no kernel, recall that D is a set of structure matrices for an algebra with a 2-

dimensional center. If E2 were to have kernel, then D1, D2 would have a common kernel and hence the

dimension of the center would be greater than or equal to 3.

Next we show that E2
2 must be a multiple of the identity and that F1 and F2 are orthogonal. Recall

that the moment map of GL(q,R)×GL(p,R) is m = m1 +m2. As D is a soliton, m(D) ·D = dD for some

d ∈ R. Since the upper left corner of m1(D) ·D1 is zero, one can compute that m2(D) must be a diagonal

matrix since E2 is nonzero.

Now that m2(D) is diagonal, m(D) · D = dD implies m1(D) · D2 = d2D2. That is, m1(0, E2) · E2 ∈

R− span < E2 >. From this we see that mH(E2) · E2 = eE2, where mH is the moment map for the action

of H = GL(2k,R) on so(2k,R). The action of GL(2k,R) on so(2k,R) has open orbits at all the nonsingular
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points; moreover, the point J =



0 1

−1 0
. . .

0 1

−1 0


is optimal and hence a distinguished point. Hence,

any other distinguished point lies in the orbit R×K · J by Theorem 5.10. That is, E2 is (up to conjugation

by SO(2k,R)) block diagonal of the form λJ .

Next we refine the lower right block. Consider the group SO(3,R) = {Id2k} × SO(3,R) × {Id2} ⊂

O(2k,R) × O(3,R) × O(2,R) = K. Hence SO(3,R) leaves W invariant and carries solitons to solitons. By

means of SO(3,R) we can put F1 in the form


0 a

−a 0

0

. As C, and hence D = g ·C, corresponds to an

algebra which has no Euclidean de Rham factor, a 6= 0. Now write F2 =


0 b c

−b 0 d

−c −d 0

. Since m2(D) is

diagonal and m2(D)ij =< Di, Dj >, it follows that D1 and D2 are orthogonal, or equivalently, F1 and F2

are orthogonal. Thus b = 0.

The stabilizer in SO(3,R) of F1 is


cos θ sin θ

− sin θ cos θ

1

. Under this group we can further change F2

so that c = 0. Now we have F2 =


0

0 d

−d 0

. Again, since C corresponds to an algebra which has no

Euclidean de Rham factor we know that d 6= 0. Now that we have simplified the presentation of our soliton,

we can compute m(D)

m1(D) = 2



λ2

. . .

λ2

a2

a2 + d2

d2


, m2(D) =

2a2 0

0 2kλ2 + 2d2



The condition m(D) ·D = rD produces three numbers which must be equal
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
6a2 + 2d2

(4 + 2k)λ2 + 2d2

2a2 + 6d2 + 2kλ2

and this produces two equalities  4λ2 = 2a2 + 4d2

4a2 − 4d2 = 2kλ2

From this we obtain the relation (4− k)a2 = (4 + 2k)d2. If k ≥ 4 then d2 ≤ 0, which is a contradiction. We

have shown for k ≥ 4 the two-step nilpotent Lie algebra C = A+c B cannot admit a soliton metric.

�

Next we construct a new example of a soliton N = U1 ⊕ U2 ⊕ Z where U1 does not admit a soliton and

U2 does admit a soliton.

Example 8.12. Let U1⊕Z be the algebra with structure matrices A+cB (from above) with k = 5. Here

dim U1 = 13 and dim Z = 2. Let U2⊕Z have the usual (2, 3) structure matrices


0 b

−b 0

0

 ,


0

0 d

−d 0

.

Then construct an algebra N with structure matrices concatenated from the above as follows



0

0

. . .

0

0

0 a

−a 0

0

0 b

−b 0

0



,



0 λ

−λ 0

. . .

0 λ

−λ 0

0

0 c

−c 0

0

0 d

−d 0


This is a soliton for λ = 1, a2 = b2 = 16/9, c2 = d2 = 1/9.

Remark. Here the algebra U1 ⊕ Z does not admit a soliton (see Proposition 8.10 with k = 5), whereas,

the algebra U2⊕Z does admit a soliton. Similarly, one obtains a soliton above with k = 4. I have not checked

the cases k ≥ 6 but these probably do not admit soliton metrics.

This completely answers Question 8.1 in regards to algebras of the type N = V1 ⊕ V2 ⊕ Z.
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4. Non-Einstein Nilradicals

In this section we describe a procedure for constructing non-Einstein nilradicals for many different (p, q)

types; that is, algebras which do not admit a soliton metric. Many of the details have the same flavor as

those through out the previous sections and we omit some of the technical work.

Consider two metric two-step nilpotent Lie algebras N1 and N2. Then one can trivially create the metric

two-step nilalgebra N = N1⊕N2 where the direct sum is orthogonal and the two subspaces N1,N2 commute.

Even if the orthogonal direct sum of two algebras is not soliton, in principal it could be possible to endow

N with a nilsoliton metric such that N1 and N2 are not orthogonal.

Let A1, A2 be structure matrices corresponding to the algebras N1,N2, respectively. Let Ni = Vi ⊕ Zi

and pi = dim Zi for i = 1, 2. Then N has structure matrix C = (C1, . . . , Cp1+p2) ∈ so(q1 + q2)p1+p2 where

Ci =

A1
i

0

 for 1 ≤ i ≤ p1

Cj+p1 =

0

A2
j

 for 1 ≤ j ≤ p2

Denote the construction by C = A1 ⊕A2.

Proposition 8.13. Consider C = A1 ⊕ A2 constructed from A1, A2 as above. If C is a soliton algebra

then so are A1, A2.

The proof amounts to block matrix multiplication upon writing out m(C) = m1(C) +m2(C) and so we

leave the details to the reader.

We do not know if the converse is true since admitting a soliton metric corresponds to moving along the

group orbit GL(q1 + q2,R)×GL(p1 + p2,R) ·C. However, we are able to sidestep this point for a particular

case of interest.

Constructing new non-Einstein nilradicals via direct summing. Let N1, with structure matrix

A1, be any algebra of type (2, 3 + 2k) as in Proposition 8.10 with k ≥ 4; note that N1 has no Euclidean

de Rham factor. Let N2, with structure matrix A2, be a nilsoliton algebra of type (p, q). To prove the

lack of existence of a soliton metric on the algebra N = N1 ⊕N2 we will study the negative gradient flow

corresponding to the group GL(q1 + q2,R) × GL(p1 + p2,R) starting at the point C = A1 ⊕ A2. We will

prove that any algebra in the limit cannot be isomorphic to N and hence that N cannot admit a soliton

metric.

Consider the subspace so(q1,R)p1+p2⊕so(q2,R)p1+p2 of so(q1 +q2,R)p1+p2 . The vector space so(q1,R)p1

embeds into the aforementioned space via the first p1 coordinates and similarly the vector space so(q2,R)p2
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embeds via the second p2 coordinates. We are interested in the case q1 = 3 + 2k and p1 = 2. Now consider

the vector space W1 ⊂ so(3 + 2k,R)2 spanned by (M, 0) and (0,M ′) where M,M ′ are of the form

0 λ

−λ 0

. . .

0 λ

−λ 0

0 a b

−a 0 c

−b −c 0


where λ, a, b, c ∈ R. Embed W1 into so(q1 + q2,R)p1+p2 above.

Now considerA ∈ W1 and a soliton B ∈ so(q2,R)p2 ⊂ so(q1 + q2,R)p1+p2 . If we consider C = A ⊕ B

then writing out the definitions one obtains

m(C) · C =

m(A) ·A

m(B) ·B


Moreover, the negative gradient flow starting at C remains tangent to W1⊕{R− span B} as B is a soliton.

We give a proof by contradiction. Assume that C admits a soliton and let D ∈ ω[C] be a limit point of

the negative gradient flow starting at [C]. By Theorem 5.10, D ∈ GL(q1 + q2,R) ×GL(p1 + p2,R) · C and

D has block decomposition in W1 ⊕ {R− span B} by the remarks above and the argument of Theorem 8.6.

By Proposition 8.13 the ‘A-slot’ of D (component in W1) must be soliton. But this contradicts Proposition

8.10 since k ≥ 4.

This provides us with many new examples of non-Einstein nilalgebras in most types (p, q).
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